A163671 Expansion of Sum_( x^k / (1 - x^(k^2)) ).
1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 3, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 4, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 2, 4, 2, 3, 2, 3, 2, 4, 2, 3, 2, 2, 2, 4, 2, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 4, 2, 2, 4
Offset: 1
Keywords
Links
- Franklin T. Adams-Watters, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Unitary Divisor.
Programs
-
Mathematica
Table[Sum[(Floor[(k^2 - k)/n] - Floor[(k^2 - k - 1)/n])*(Floor[n/k] - Floor[(n - 1)/k]), {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Aug 02 2017 *)
-
PARI
al(n)=local(m);m=sqrtint(n);Vec(sum(k=1,m,(x^k+x*O(x^n))/(1-x^(k^2))+x^(m+1)/(1-x)))
-
PARI
a(n)=local(d,r);r=0;d=divisors(n);for(k=1,#d,if((n-d[k])%d[k]^2==0,r++));r
-
PARI
a(n)=sumdiv(n,d,(n-d)%d^2==0) \\ Charles R Greathouse IV, Jun 01 2016
Formula
a(n) = Sum_{k=1..n} (floor((k^2-k)/n) - floor((k^2-k-1)/n))*(floor(n/k) - floor((n-1)/k)). - Anthony Browne, Jun 01 2016
2 <= a(n) <= 2*omega(n) for n > 1. In particular a(p^e) = 2 for each prime p and each e > 0. - Charles R Greathouse IV, Jun 01 2016
Comments