cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163746 Expansion of (theta_3(q)^2 + 3 * theta_3(q^3)^2) / 4 - 1 in powers of q.

Original entry on oeis.org

1, 1, 3, 1, 2, 3, 0, 1, 1, 2, 0, 3, 2, 0, 6, 1, 2, 1, 0, 2, 0, 0, 0, 3, 3, 2, 3, 0, 2, 6, 0, 1, 0, 2, 0, 1, 2, 0, 6, 2, 2, 0, 0, 0, 2, 0, 0, 3, 1, 3, 6, 2, 2, 3, 0, 0, 0, 2, 0, 6, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 9, 0, 0, 6, 0, 2, 1, 2, 0, 0, 4, 0, 6, 0, 2, 2, 0, 0, 0, 0, 0, 3, 2, 1, 0, 3, 2, 6, 0, 2, 0
Offset: 1

Views

Author

Michael Somos, Aug 03 2009

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^2 + 3*q^3 + q^4 + 2*q^5 + 3*q^6 + q^8 + q^9 + 2*q^10 + 3*q^12 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 82, Eq. (32.53).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, (-1)^Quotient[#, 6] {1, 0, 2, 0, 1, 0}[[Mod[#, 6, 1]]] &]]; (* Michael Somos, Sep 02 2015 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[# < 3, 1, # == 3, Mod[#2, 2] 2 + 1, Mod[#, 4] == 1, #2 + 1, True, (1 + (-1)^#2) / 2] & @@@ FactorInteger @ n)]; (* Michael Somos, Sep 02 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^2 + 3 EllipticTheta[ 3, 0, q^3]^2) / 4 - 1, {q, 0, n}]; (* Michael Somos, Sep 02 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, ((d%2) * ((d%3==0) + 1)) * (-1)^(d\6)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p==3, e%2*2 + 1, p%4==1, e+1, 1-e%2)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^2 * eta(x^6 + A)^3 / (eta(x + A) * eta(x^3 + A) * eta(x^12 + A)^2) - 1, n))};

Formula

Expansion of psi(q) * psi(q^2) * chi(q^3) * chi(-q^6) - 1 in powers of q where psi(), chi() are Ramanujan theta functions.
Expansion of eta(q^2) * eta(q^4)^2 * eta(q^6)^3 / (eta(q) * eta(q^3) * eta(q^12)^2) - 1 in powers of q.
Moebius transform is period 12 sequence [ 1, 0, 2, 0, 1, 0, -1, 0, -2, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = 1, a(3^e) = 2-(-1)^e, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) == (1+(-1)^e)/2 if p == 3 (mod 4). [corrected by Amiram Eldar, Nov 14 2023]
G.f.: Sum_{k>0} (x^k + x^(3*k)) / (1 - x^(2*k) + x^(4*k)).
a(n) = A125061(n) unless n=0. a(12*n + 7) = a(12*n + 11) = 0.
a(2*n) = a(n). a(2*n + 1) = A138741(n). a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n). - Michael Somos, Sep 02 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Nov 14 2023