cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163762 Triangle of coefficients of polynomials H(n,x)=(U^n+L^n)/2+(U^n-L^n)/(2d), where U=x+d, L=x-d, d=(x+4)^(1/2).

Original entry on oeis.org

1, 1, 1, 1, 3, 4, 1, 6, 13, 4, 1, 10, 29, 24, 16, 1, 15, 55, 81, 88, 16, 1, 21, 95, 207, 300, 144, 64, 1, 28, 154, 448, 813, 684, 496, 64, 1, 36, 238, 868, 1913, 2352, 2272, 768, 256, 1, 45, 354, 1554, 4077, 6625, 7984, 4704, 2560, 256, 1, 55, 510, 2622, 8061, 16283
Offset: 1

Views

Author

Clark Kimberling, Aug 04 2009

Keywords

Comments

H(n,x)=P(n,x)+Q(n,x), where P and Q are given by A162516, A162517.
H(n,0)=4^Floor(n/2) for n=0,1,2,...
H(n,1)=A063727(n); row sums
(Column 2)=A000217 (triangular numbers)

Examples

			First six rows:
1
1...1
1...3...4
1...6..13...4
1..10..29..24..16
1..15..55..81..88..16
Row 6 represents x^5+15*x^4+55*x^3+81*x^2+88*x+16.
		

Crossrefs

Formula

H(n,x)=2*x*H(n-1,x)-(x^2-x-4)*H(n-2,x), where H(0,x)=1, H(1,x)=x+1.
H(n,x)=(1+1/d)*U^n+(1-1/d)*L^n, where U=x+d, L=x-d, d=(x+4)^(1/2).