A192428 Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.
1, 1, 5, 11, 57, 185, 829, 3067, 12801, 49633, 201413, 794747, 3190617, 12673529, 50672029, 201782923, 805529409, 3210794113, 12810136517, 51078991403, 203744818617, 812521585145, 3240726179389, 12924488375899, 51547405667265
Offset: 0
Keywords
Examples
The first five polynomials p(n,x) and their reductions are as follows: p(0,x) = 1 -> 1 p(1,x) = 1 + x -> 1 + x p(2,x) = 4 + 3*x + x^2 -> 5 + 4*x p(3,x) = 4 + 13*x + 6*x^2 + x^3 -> 11 + 21*x p(4,x) = 16 + 24*x + 29*x^2 + 10*x^3 + x^4 -> 57 + 76*x. From these, read a(n) = (1, 1, 5, 11, 57, 185, ...) and A192429 = (0, 1, 4, 21, 76, 329, ...).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,10,-6,-9).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x-7*x^2-3*x^3)/(1-2*x-10*x^2+6*x^3+9*x^4) )); // G. C. Greubel, Jul 13 2023 -
Mathematica
q[x_]:= x+1; d= Sqrt[x+4]; u[x_]:= x+d; v[x_]:= x-d; p[n_, x_]:= (u[x]^n +v[x]^n)/2 + (u[x]^n -v[x]^n)/(2*d) (* A163762 *) Table[Expand[p[n, x]], {n, 0, 6}] reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 0, 30}] Table[Coefficient[Part[t, n], x, 0], {n,30}] (* A192428 *) Table[Coefficient[Part[t, n], x, 1], {n,30}] (* A192429 *) LinearRecurrence[{2,10,-6,-9}, {1,1,5,11}, 40] (* G. C. Greubel, Jul 13 2023 *)
-
SageMath
@CachedFunction def a(n): # a = A192428 if (n<4): return (1, 1, 5, 11)[n] else: return 2*a(n-1) + 10*a(n-2) - 6*a(n-3) - 9*a(n-4) [a(n) for n in range(41)] # G. C. Greubel, Jul 13 2023
Formula
From Colin Barker, May 12 2014: (Start)
a(n) = 2*a(n-1) + 10*a(n-2) - 6*a(n-3) - 9*a(n-4).
G.f.: (1-x-7*x^2-3*x^3)/(1-2*x-10*x^2+6*x^3+9*x^4). (End)
a(n) = Sum_{k=0..n} T(n,k)*Fibonacci(k-1), where T(n, k) = [x^k] ( ((x + sqrt(x+4))^n + (x - sqrt(x+4))^n)/2 + ((x + sqrt(x+4))^n - (x - sqrt(x+4))^n)/(2*sqrt(x+4)) ). - G. C. Greubel, Jul 13 2023
Comments