cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163770 Triangle read by rows interpolating the swinging subfactorial (A163650) with the swinging factorial (A056040).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 3, 4, 6, -9, -7, -4, 0, 6, 44, 35, 28, 24, 24, 30, -165, -121, -86, -58, -34, -10, 20, 594, 429, 308, 222, 164, 130, 120, 140, -2037, -1443, -1014, -706, -484, -320, -190, -70, 70, 6824, 4787, 3344, 2330, 1624, 1140, 820, 630, 560, 630
Offset: 0

Views

Author

Peter Luschny, Aug 05 2009

Keywords

Comments

An analog to the derangement triangle (A068106).

Examples

			1
0, 1
1, 1, 2
2, 3, 4, 6
-9, -7, -4, 0, 6
44, 35, 28, 24, 24, 30
-165, -121, -86, -58, -34, -10, 20
		

Crossrefs

Row sums are A163773.

Programs

  • Maple
    DiffTria := proc(f,n,display) local m,A,j,i,T; T:=f(0);
    for m from 0 by 1 to n-1 do A[m] := f(m);
    for j from m by -1 to 1 do A[j-1] := A[j-1] - A[j] od;
    for i from 0 to m do T := T,(-1)^(m-i)*A[i] od;
    if display then print(seq(T[i],i=nops([T])-m..nops([T]))) fi;
    od; subsop(1=NULL,[T]) end:
    swing := proc(n) option remember; if n = 0 then 1 elif
    irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    Computes n rows of the triangle.
    A163770 := n -> DiffTria(k->swing(k),n,true);
    A068106 := n -> DiffTria(k->factorial(k),n,true);
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[(-1)^(n - i)*Binomial[n - k, n - i]*sf[i], {i, k, n}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)

Formula

T(n,k) = Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*i$ where i$ denotes the swinging factorial of i (A056040).