cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163773 Row sums of the swinging derangement triangle (A163770).

Original entry on oeis.org

1, 1, 4, 15, -14, 185, -454, 2107, -6194, 22689, -70058, 234971, -734304, 2368379, -7404318, 23417955, -72988938, 228324569, -708982738, 2202742447, -6815736144, 21077285943, -65016664062, 200371842727, -616463969324, 1894794918275, -5816606133674, 17839764136377
Offset: 0

Views

Author

Peter Luschny, Aug 05 2009

Keywords

Crossrefs

Cf. A163770.

Programs

  • Maple
    swing := proc(n) option remember; if n = 0 then 1 elif
    irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    a := proc(n) local i,k; add(add((-1)^(n-i)*binomial(n-k,n-i)*swing(i),i=k..n), k=0..n) end:
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[(-1)^(n - i)*Binomial[n - k, n - i]*sf[i], {i, k, n}]; Table[Sum[t[n, k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Aug 03 2017 *)

Formula

a(n) = Sum_{k=0..n} Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*i$ where i$ denotes the swinging factorial of i (A056040).

Extensions

Terms a(18) onward added by G. C. Greubel, Aug 03 2017