A163773 Row sums of the swinging derangement triangle (A163770).
1, 1, 4, 15, -14, 185, -454, 2107, -6194, 22689, -70058, 234971, -734304, 2368379, -7404318, 23417955, -72988938, 228324569, -708982738, 2202742447, -6815736144, 21077285943, -65016664062, 200371842727, -616463969324, 1894794918275, -5816606133674, 17839764136377
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Peter Luschny, Swinging Factorial.
Crossrefs
Cf. A163770.
Programs
-
Maple
swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end: a := proc(n) local i,k; add(add((-1)^(n-i)*binomial(n-k,n-i)*swing(i),i=k..n), k=0..n) end:
-
Mathematica
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[(-1)^(n - i)*Binomial[n - k, n - i]*sf[i], {i, k, n}]; Table[Sum[t[n, k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Aug 03 2017 *)
Formula
a(n) = Sum_{k=0..n} Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*i$ where i$ denotes the swinging factorial of i (A056040).
Extensions
Terms a(18) onward added by G. C. Greubel, Aug 03 2017