A163778 Odd terms in A054639.
3, 5, 9, 11, 23, 29, 33, 35, 39, 41, 51, 53, 65, 69, 81, 83, 89, 95, 99, 105, 113, 119, 131, 135, 155, 173, 179, 183, 189, 191, 209, 221, 231, 233, 239, 243, 245, 251, 261, 273, 281, 293, 299, 303, 309, 323, 329, 359, 371, 375, 393, 411, 413, 419, 429
Offset: 1
Keywords
Links
- P. R. J. Asveld, Table of n, a(n) for n=1..6706.
- P. R. J. Asveld, Permuting operations on strings and their relation to prime numbers, Discrete Applied Mathematics 159 (2011) 1915-1932.
- P. R. J. Asveld, Permuting operations on strings and the distribution of their prime numbers (2011), TR-CTIT-11-24, Dept. of CS, Twente University of Technology, Enschede, The Netherlands.
- P. R. J. Asveld, Some Families of Permutations and Their Primes (2009), TR-CTIT-09-27, Dept. of CS, Twente University of Technology, Enschede, The Netherlands.
- P. R. J. Asveld, Permuting Operations on Strings-Their Permutations and Their Primes, Twente University of Technology, 2014.
Programs
-
Mathematica
follow[s_, f_] := Module[{t, k}, t = f[s]; k = 1; While[t>s, k++; t = f[t]]; If[s == t, k, 0]]; okQ[n_] := n>1 && n == follow[1, Function[j, Ceiling[n/2] + (-1)^j*Ceiling[ (j-1)/2]]]; A163778 = Select[Range[1000], okQ] (* Jean-François Alcover, Jun 07 2018, after Andrew Howroyd *)
-
PARI
Follow(s, f)={my(t=f(s), k=1); while(t>s, k++; t=f(t)); if(s==t, k, 0)} ok(n)={n>1 && n==Follow(1, j->ceil(n/2) + (-1)^j*ceil((j-1)/2))} select(ok, [1..1000]) \\ Andrew Howroyd, Nov 11 2017
-
PARI
ok(n)={n>1 && n%2==1 && isprime(2*n+1) && znorder(Mod(2, 2*n+1)) == if(n%4==3, n, 2*n)} select(ok, [1..1000]) \\ Andrew Howroyd, Nov 11 2017
Extensions
a(33)-a(55) from Andrew Howroyd, Nov 11 2017
New name from Joerg Arndt, Mar 23 2018
Comments