cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163778 Odd terms in A054639.

Original entry on oeis.org

3, 5, 9, 11, 23, 29, 33, 35, 39, 41, 51, 53, 65, 69, 81, 83, 89, 95, 99, 105, 113, 119, 131, 135, 155, 173, 179, 183, 189, 191, 209, 221, 231, 233, 239, 243, 245, 251, 261, 273, 281, 293, 299, 303, 309, 323, 329, 359, 371, 375, 393, 411, 413, 419, 429
Offset: 1

Views

Author

Peter R. J. Asveld, Aug 11 2009

Keywords

Comments

Previous name was: The A_1-primes (Archimedes_1 primes).
We have: (1) N is an A_1-prime iff N is odd, p=2N+1 is a prime number and only one of +2 and -2 generates Z_p^* (the multiplicative group of Z_p); (2) N is an A_1-prime iff p=2N+1 is a prime number and exactly one of the following holds: (a) N == 1 (mod 4) and +2 generates Z_p^* but -2 does not, (b) N == 3 (mod 4) and -2 generates Z_p^* but +2 does not.
The A_1-primes are the odd T- or Twist-primes (the T-primes are the same as the Queneau-numbers, A054639). For the related A_0-, A^+_1- and A^-_1-primes, see A163777, A163779 and A163780. Considered as a set, the present sequence is the union of the A^+_1-primes (A163779) and the A^-_1-primes (A163780). It is also equal to the difference of A054639 and the A_0-primes (A163777).

Crossrefs

Programs

  • Mathematica
    follow[s_, f_] := Module[{t, k}, t = f[s]; k = 1; While[t>s, k++; t = f[t]]; If[s == t, k, 0]];
    okQ[n_] := n>1 && n == follow[1, Function[j, Ceiling[n/2] + (-1)^j*Ceiling[ (j-1)/2]]];
    A163778 = Select[Range[1000], okQ] (* Jean-François Alcover, Jun 07 2018, after Andrew Howroyd *)
  • PARI
    Follow(s, f)={my(t=f(s), k=1); while(t>s, k++; t=f(t)); if(s==t, k, 0)}
    ok(n)={n>1 && n==Follow(1, j->ceil(n/2) + (-1)^j*ceil((j-1)/2))}
    select(ok, [1..1000]) \\ Andrew Howroyd, Nov 11 2017
    
  • PARI
    ok(n)={n>1 && n%2==1 && isprime(2*n+1) && znorder(Mod(2, 2*n+1)) == if(n%4==3, n, 2*n)}
    select(ok, [1..1000]) \\ Andrew Howroyd, Nov 11 2017

Extensions

a(33)-a(55) from Andrew Howroyd, Nov 11 2017
New name from Joerg Arndt, Mar 23 2018