A163812 Expansion of (1 - x^5) * (1 - x^6) / ((1 - x) * (1 - x^10)) in powers of x.
1, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1
Offset: 0
Examples
G.f. = 1 + x + x^2 + x^3 + x^4 - x^6 - x^7 - x^8 - x^9 + x^11 + x^12 + x^13 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,-1,1,-1).
Programs
-
Mathematica
a[ n_] := Boole[n == 0] + (-1)^Quotient[n, 5] Sign@Mod[n, 5]; (* Michael Somos, Jun 17 2015 *)
-
PARI
{a(n) = (n==0) + [0, 1, 1, 1, 1, 0, -1, -1, -1, -1][n%10 + 1]};
Formula
Euler transform of length 10 sequence [ 1, 0, 0, 0, -1, -1, 0, 0, 0, 1].
a(5*n) = 0 unless n=0.
a(n) = -a(-n) unless n=0. a(n+5) = -a(n) unless n=0 or n=-5.
G.f.: (1 + x^2 + x^4) / (1 - x + x^2 - x^3 + x^4).
G.f.: A(x) = 1 / (1 - x / ( 1 + x^4 / (1 + x^2))) = 1 + x / (1 - x / (1 + x^3 / (1 + x^2 / (1 + x / (1 - x))))). - Michael Somos, Jan 03 2013
a(n) = A099443(n-1), n>0. - R. J. Mathar, Aug 05 2009