A163824 Number of permutations of length n in the 2x2 double-chevron permutation grid class.
1, 1, 2, 6, 24, 106, 470, 2038, 8624, 35754, 145902, 588358, 2351910, 9341814, 36936146, 145567966, 572415344, 2247578314, 8816986046, 34570684966, 135522530174, 531285354214, 2083180354466, 8170672802686, 32059325714054, 125845764142006, 494223989283650
Offset: 0
Keywords
Examples
a(5) = 106 because the following 14 permutations can't be gridded (and hence are in the basis of the permutation class): 12543, 13254, 14253, 15243, 15423, 25413, 31254, 35412, 41253, 51243, 51423, 52413, 53412, 54123.
Links
- David Bevan, Permutation Grid Classes
Programs
-
Mathematica
CoefficientList[Series[1/Sqrt[1-4x]-(x(1-x))/((1-2x)(1-3x)),{x,0,30}],x] (* Harvey P. Dale, Jun 09 2016 *)
Formula
O.g.f: 1/sqrt(1-4*x) - x*(1-x)/((1-2*x)*(1-3*x)).
Conjecture: n*(n^2-6*n+11)*a(n) +(-9*n^3+56*n^2-119*n+60)*a(n-1) +2*(13*n^3-83*n^2+193*n-150)*a(n-2) -12*(2*n-5)*(n^2-4*n+6)*a(n-3) =0 . - R. J. Mathar, Jul 24 2012
Comments