A163830 The n-th composite minus the product of the indices of the primes in its prime factorization.
3, 4, 7, 5, 7, 10, 10, 9, 15, 14, 17, 13, 17, 22, 16, 20, 19, 24, 24, 31, 23, 27, 23, 32, 30, 27, 37, 34, 39, 33, 37, 46, 33, 41, 37, 46, 46, 40, 52, 41, 48, 54, 51, 47, 63, 47, 56, 61, 51, 58, 68, 62, 57, 68, 57, 66, 77, 65, 69, 76, 64, 72, 67, 83, 78, 67, 83, 71, 79, 71, 94
Offset: 1
Keywords
Examples
At n=1, A002808(1) = 4 and A003963(4)=1, so a(1) = 4 - 1 = 3. At n=2, A002808(2) = 6 and A003963(6)=2, so a(2) = 6 - 2 = 4. At n=3, A002808(3) = 8 and A003963(8)=1, so a(3) = 8 - 1 = 7.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A002808 := proc(n) local a; if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a) ; end if; end do; end if; end proc: A163829 := proc(n) local c; c := A002808(n) ; pfs := ifactors(c)[2] ; mul( numtheory[pi](op(1,p))^op(2,p), p=pfs) ; end: A163830 := proc(n) A002808(n)-A163829(n) ; end: seq(A163830(n),n=1..100) ; # R. J. Mathar, Aug 08 2009
-
Mathematica
With[{nn=100},#-Times@@(PrimePi/@Flatten[Table[#[[1]],{#[[2]]}]&/@ FactorInteger[#]])&/@Complement[Range[2,nn],Prime[Range[ PrimePi[ nn]]]]](* Harvey P. Dale, Mar 29 2012 *)
Extensions
Edited by R. J. Mathar, Jul 08 2009
Comments