A163841 Triangle interpolating the swinging factorial (A056040) restricted to even indices with its binomial transform. Same as interpolating bilateral Schroeder paths (A026375) with the central binomial coefficients (A000984).
1, 3, 2, 11, 8, 6, 45, 34, 26, 20, 195, 150, 116, 90, 70, 873, 678, 528, 412, 322, 252, 3989, 3116, 2438, 1910, 1498, 1176, 924, 18483, 14494, 11378, 8940, 7030, 5532, 4356, 3432, 86515, 68032, 53538
Offset: 0
Examples
Triangle begins 1; 3, 2; 11, 8, 6; 45, 34, 26, 20; 195, 150, 116, 90, 70; 873, 678, 528, 412, 322, 252; 3989, 3116, 2438, 1910, 1498, 1176, 924;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, Swinging Factorial.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
Crossrefs
Programs
-
Maple
Computes n rows of the triangle. For the functions 'SumTria' and 'swing' see A163840. a := n -> SumTria(k->swing(2*k),n,true);
-
Mathematica
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[2*i], {i, k, n}]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
Comments