A163842 Triangle interpolating the swinging factorial (A056040) restricted to odd indices with its binomial transform. Same as interpolating the beta numbers 1/beta(n,n) (A002457) with (A163869). Triangle read by rows, for n >= 0, k >= 0.
1, 7, 6, 43, 36, 30, 249, 206, 170, 140, 1395, 1146, 940, 770, 630, 7653, 6258, 5112, 4172, 3402, 2772, 41381, 33728, 27470, 22358, 18186, 14784, 12012, 221399, 180018, 146290, 118820, 96462, 78276, 63492, 51480
Offset: 0
Examples
Triangle begins: 1; 7, 6; 43, 36, 30; 249, 206, 170, 140; 1395, 1146, 940, 770, 630; 7653, 6258, 5112, 4172, 3402, 2772; 41381, 33728, 27470, 22358, 18186, 14784, 12012;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, Swinging Factorial.
Programs
-
Maple
# Computes n rows of the triangle. For the functions 'SumTria' and 'swing' see A163840. a := n -> SumTria(k->swing(2*k+1),n,true);
-
Mathematica
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n-k, n-i]*sf[2*i+1], {i, k, n}]; Table[t[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
Formula
T(n,k) = Sum_{i=k..n} binomial(n-k,n-i)*(2i+1)$ where i$ denotes the swinging factorial of i (A056040).