A163844 Row sums of triangle A163841.
1, 5, 25, 125, 621, 3065, 15051, 73645, 359485, 1752125, 8532591, 41537105, 202200415, 984526275, 4795673085, 23372376525, 113978687085, 556205251325, 2716129289775, 13273197773125, 64909884686595, 317652752793975, 1555587408645225, 7623031579626625
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Peter Luschny, Swinging Factorial.
Programs
-
Maple
swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end: a := proc(n) local i,k; add(add(binomial(n-k,n-i)*swing(2*i),i=k..n),k=0..n) end:
-
Mathematica
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[2*i], {i, k, n}]; Table[Sum[t[n, k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Aug 06 2017 *)
Formula
a(n) = Sum_{k=0..n} Sum_{i=k..n} binomial(n-k,n-i)*(2i)$ where i$ denotes the swinging factorial of i (A056040).