cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A163355 Permutation of integers for constructing Hilbert curve in N x N grid.

Original entry on oeis.org

0, 1, 3, 2, 14, 15, 13, 12, 4, 7, 5, 6, 8, 11, 9, 10, 16, 19, 17, 18, 20, 21, 23, 22, 30, 29, 31, 28, 24, 25, 27, 26, 58, 57, 59, 56, 54, 53, 55, 52, 60, 61, 63, 62, 50, 51, 49, 48, 32, 35, 33, 34, 36, 37, 39, 38, 46, 45, 47, 44, 40, 41, 43, 42, 234, 235, 233, 232, 236, 239
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Crossrefs

Inverse: A163356. A163357 & A163359 give two variants of Hilbert curve in N x N grid. Cf. also A163332.
Second and third "powers": A163905, A163915.
In range [A000302(n-1)..A024036(n)] of this permutation, the number of cycles is given by A163910, number of fixed points seems to be given by A147600(n-1) (fixed points themselves: A163901). Max. cycle sizes is given by A163911 and LCM's of all cycle sizes by A163912.

Programs

  • Maple
    A057300 := proc(n)
        option remember;
        `if`(n=0, 0, procname(iquo(n, 4, 'r'))*4+[0, 2, 1, 3][r+1])
    end proc:
    A163355 := proc(n)
        option remember ;
        local d,base4,i,r ;
        if n <= 1 then
            return n ;
        end if;
        base4 := convert(n,base,4) ;
        d := op(-1,base4) ;
        i := nops(base4)-1 ;
        r := n-d*4^i ;
        if ( d=1 and type(i,even) ) or ( d=2 and type(i,odd)) then
            4^i+procname(A057300(r)) ;
        elif d= 3 then
            2*4^i+procname(A057300(r)) ;
        else
            3*4^i+procname(4^i-1-r) ;
        end if;
    end proc:
    seq(A163355(n),n=0..100) ; # R. J. Mathar, Nov 22 2023
  • PARI
    A057300(n) = { my(t=1, s=0); while(n>0,  if(1==(n%4),n++,if(2==(n%4),n--)); s += (n%4)*t; n >>= 2; t <<= 2); (s); };
    A163355(n) = if(!n,n,my(i = (#binary(n)-1)\2, f = 4^i, d = (n\f)%4, r = (n%f)); if(((1==d)&&!(i%2))||((2==d)&&(i%2)), f+A163355(A057300(r)), if(3==d,f+f+A163355(A057300(r)), (3*f)+A163355(f-1-r)))); \\ Antti Karttunen, Apr 14 2018

Formula

a(0) = 0, and given d=1, 2 or 3, then a((d*(4^i))+r)
= (4^i) + a(A057300(r)), if d=1 and i is even, or if d=2 and i is odd
= 2*(4^i) + a(A057300(r)), if d=3,
= 3*(4^i) + a((4^i)-1-r) in other cases.
From Alan Michael Gómez Calderón, May 06 2025: (Start)
a(3*A000695(n)) = 2*A000695(n);
a(3*(A000695(n) + 2^A000695(2*m))) = 2*(A000695(n) + 2^A000695(2*m)) for m >= 2;
a((2 + 16^n)*2^(-1 + 4*m)) = 4^(2*(n + m) - 1) + (11*16^m - 2)/3. (End)

Extensions

Links to further derived sequences added by Antti Karttunen, Sep 21 2009

A163901 The positions i where A163355(i) = i, that is, the fixed points of permutation A163355.

Original entry on oeis.org

0, 1, 16, 20, 21, 256, 260, 261, 320, 321, 336, 340, 341, 4096, 4100, 4101, 4160, 4161, 4176, 4180, 4181, 5120, 5121, 5136, 5140, 5141, 5376, 5380, 5381, 5440, 5441, 5456, 5460, 5461, 65536, 65540, 65541, 65600, 65601, 65616, 65620, 65621
Offset: 0

Views

Author

Antti Karttunen, Sep 19 2009

Keywords

Comments

Alternatively, the positions of zeros in A163900.

Crossrefs

a(n) = A000695(A165404(n)). Same sequence in base-4: A165406. See also A163902, A163903, A163910.

A163914 Number of 3-cycles in range [A000302(n-1)..A024036(n)] of permutation A163355/A163356.

Original entry on oeis.org

0, 0, 2, 1, 10, 9, 54, 57, 295, 329, 1613, 1834, 8812, 10072
Offset: 0

Views

Author

Antti Karttunen, Sep 19 2009

Keywords

Crossrefs

a(n) = A163913(n)/3. Bisections: A163909, A163919. See also A163903, A163911, A163912, A163904, A163890.

A163902 The positions i where A163905(i) = i, but not A163355(i) = i, that is, the 2-cycles of permutation A163355.

Original entry on oeis.org

2, 3, 22, 23, 25, 26, 29, 31, 37, 38, 40, 41, 42, 43, 53, 55, 60, 61, 62, 63, 262, 263, 265, 266, 269, 271, 322, 323, 342, 343, 345, 346, 349, 351, 357, 358, 360, 361, 362, 363, 373, 375, 380, 381, 382, 383, 405, 406, 408, 409, 410, 411, 416, 420, 421, 422
Offset: 0

Views

Author

Antti Karttunen, Sep 19 2009

Keywords

Crossrefs

See also A163901, A163903, A163910.

A163913 Number of integers i in range [A000302(n-1)..A024036(n)] of permutation A163355/A163356 with A163915(i)=i, but not A163355(i)=i.

Original entry on oeis.org

0, 0, 6, 3, 30, 27, 162, 171, 885, 987, 4839, 5502, 26436, 30216
Offset: 0

Views

Author

Antti Karttunen, Sep 19 2009

Keywords

Crossrefs

a(n) = 3*A163914(n). See also A163903.
Showing 1-5 of 5 results.