A163927 Numerators of the higher order exponential integral constants alpha(k,4).
1, 49, 1897, 69553, 2515513, 90663937, 3264855049, 117543378001, 4231639039705, 152339702576545, 5484235568128681, 197432536935184369, 7107571838026381177, 255872590744254526273, 9211413307971174616393
Offset: 0
Examples
a(k=0,n=4) = 1, a(k=1,4) = 49/36, a(k=2,4) = 1897/1296, a(k=3,4) = 69553/46656.
Links
- J. W. Meijer and N. H. G. Baken, The Exponential Integral Distribution, Statistics and Probability Letters, Volume 5, No. 3, April 1987, pp. 209-211.
Crossrefs
Programs
-
Maple
coln := 4; nmax := 15; kmax := nmax: k:=0: for n from 1 to nmax do alpha(k, n) := 1 od: for k from 1 to kmax do for n from 1 to nmax do alpha(k, n) := (1/k)*sum(sum(p^(-2*(k-i)), p=0..n-1)*alpha(i, n), i=0..k-1) od; od: seq(alpha(k, coln), k=0..nmax-1); # End program 1 coln:=4; nmax1 := 16; for n from 0 to nmax1 do A008955(n, 0):=1 end do: for n from 0 to nmax1 do A008955(n, n) := (n!)^2 end do: for n from 1 to nmax1 do for m from 1 to n-1 do A008955(n, m) := A008955(n-1, m-1)*n^2 + A008955(n-1, m) end do: end do: m:=coln-1: f(m):=0: for n from 0 to m do f(m) := f(m) + (-1)^(n + m)*A008955(m, n)*z^(2*m-2*n) od: GF(z,coln) := m!^2/f(m): GF(z,coln):=series(GF(z,coln), z, nmax1); # End program 2
Formula
alpha(k,n) = (1/k) * Sum_{i=0..k-1} (Sum_{p=0..n-1}(p^(2*i-2*k))*alpha(i, n)) with alpha(0,n) = 1, k >= 0 and n >= 1.
alpha(k,n) = alpha(k,n+1) -alpha(k-1,n+1)/n^2.
GF(z,n) = product((1-(z/k)^2)^(-1), k = 1..n-1) = (Pi*z/sin(Pi*z))/(Beta(n+z,n-z)/Beta(n,n)).
Comments