cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163927 Numerators of the higher order exponential integral constants alpha(k,4).

Original entry on oeis.org

1, 49, 1897, 69553, 2515513, 90663937, 3264855049, 117543378001, 4231639039705, 152339702576545, 5484235568128681, 197432536935184369, 7107571838026381177, 255872590744254526273, 9211413307971174616393
Offset: 0

Views

Author

Johannes W. Meijer and Nico Baken, Aug 13 2009, Aug 17 2009

Keywords

Comments

The higher order exponential integrals, see A163931, are defined by E(x,m,n) = x^(n-1)*Integral_{t>=x} E(t,m-1,n)/t^n for m >= 1 and n >= 1, with E(x,m=0,n) = exp(-x).
The series expansions of the higher order exponential integrals are dominated by the alpha(k,n) and the gamma(k,n) constants, see A090998.
The first Maple program uses the alpha(k,n) formula and the second the GF(z,n) to generate the alpha(k,n) coefficients in each column.
Appears to equal the numerator of the multiple harmonic (star) sum Sum_{1 <= k_1 <= ... <= k_n <= 3} 1/(k_1^2*...*k_n^2). If true, then a(n) = numerator( 3/2 - 3/(5*4^n) + 1/(10*9^n) ). - Peter Bala, Jan 31 2019

Examples

			a(k=0,n=4) = 1, a(k=1,4) = 49/36, a(k=2,4) = 1897/1296, a(k=3,4) = 69553/46656.
		

Crossrefs

Cf. A163931 (E(x,m,n)), A090998 (gamma(k,n)).
a(k,1) = A000007(k)
a(k,2) = A000012(k) = 1^k.
a(k,3) = A002450(k+1)/A000302(k) with A000302(k) = 4^k.
a(k,4) = A163927(k)/A009980(k) with A009980(k) = 36^k.
The GF(z,n) lead to A008955.
The denominators of a(1,n), n >= 2, lead to A007407.

Programs

  • Maple
    coln := 4; nmax := 15; kmax := nmax: k:=0: for n from 1 to nmax do alpha(k, n) := 1 od: for k from 1 to kmax do for n from 1 to nmax do alpha(k, n) := (1/k)*sum(sum(p^(-2*(k-i)), p=0..n-1)*alpha(i, n), i=0..k-1) od; od: seq(alpha(k, coln), k=0..nmax-1);
    # End program 1
    coln:=4; nmax1 := 16; for n from 0 to nmax1 do A008955(n, 0):=1 end do: for n from 0 to nmax1 do A008955(n, n) := (n!)^2 end do: for n from 1 to nmax1 do for m from 1 to n-1 do A008955(n, m) := A008955(n-1, m-1)*n^2 + A008955(n-1, m) end do: end do: m:=coln-1: f(m):=0: for n from 0 to m do f(m) := f(m) + (-1)^(n + m)*A008955(m, n)*z^(2*m-2*n) od: GF(z,coln) := m!^2/f(m): GF(z,coln):=series(GF(z,coln), z, nmax1);
    # End program 2

Formula

alpha(k,n) = (1/k) * Sum_{i=0..k-1} (Sum_{p=0..n-1}(p^(2*i-2*k))*alpha(i, n)) with alpha(0,n) = 1, k >= 0 and n >= 1.
alpha(k,n) = alpha(k,n+1) -alpha(k-1,n+1)/n^2.
GF(z,n) = product((1-(z/k)^2)^(-1), k = 1..n-1) = (Pi*z/sin(Pi*z))/(Beta(n+z,n-z)/Beta(n,n)).