cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163928 Numerators of the higher order exponential integral constants alpha(2,n).

Original entry on oeis.org

0, 1, 21, 1897, 32197, 20881861, 7139587, 17462165587, 283355376967, 69621962857381, 70246946681461, 1036088178214798501, 1042504974775473001, 29931734181763981573561, 4295332813075795410223, 4312254507400142830831
Offset: 1

Views

Author

Johannes W. Meijer & Nico Baken, Aug 13 2009, Aug 17 2009

Keywords

Comments

See A163927 for information about the alpha(k,n) constants.
Apart from a difference of offset, alpha(2,n) appears to be the multiple harmonic (star) sum Sum_{j = 1..n} 1/j^2 Sum_{k = 1..j} 1/k^2, which has the initial values [1, 21/16, 1897/1296, 32197/20736, 20881861/12960000, 7139587/4320000, ...]. - Peter Bala, Jan 31 2019

Examples

			alpha(k=2,n=1) = 0, alpha(k=2,2) = 1, alpha(k=2,3) = 21/16, alpha(k=2,4) = 1897/1296.
		

Crossrefs

Cf. A163929 (denominators).
Cf. A163927 (alpha(k,n)) and A090998 (gamma(k,n)).

Programs

  • Maple
    nmax:=17; rowk:=2; kmax:=nmax: k:=0: for n from 1 to nmax do alpha(k,n):=1 od: for k from 1 to kmax do for n from 1 to nmax do alpha(k,n) := (1/k)*sum(sum(p^(-2*(k-i)),p=0..n-1)*alpha(i, n),i=0..k-1) od; od: seq(alpha(rowk, n),n=1..nmax);

Formula

alpha(k,n) = (1/k)*Sum_{i=0..k-1} (Sum_{p=0..n-1} p^(-2*(k-i))*alpha(i, n) with alpha(0,n) = 1, with k = 2 and n >= 1. alpha(1,n) = A007406(n-1)/A007407(n-1) for n >= 2.