cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163930 Duplicate of A090998.

Original entry on oeis.org

9, 8, 9, 0, 5, 5, 9, 9, 5, 3, 2, 7, 9, 7, 2, 5, 5, 5, 3, 9, 5, 3, 9, 5, 6, 5, 1, 5, 0, 0, 6, 3, 4, 7, 0, 7, 9, 3, 9, 1, 8, 3, 5, 2, 0, 7, 2, 8, 2, 1, 4, 0, 9, 0, 4, 4, 3, 1, 9, 5, 7, 8, 3, 6, 8, 6, 1, 3, 6, 6, 3, 2, 0, 4, 9, 4, 7, 8, 7, 7, 1, 7, 4, 7, 4, 4, 6, 0, 8, 4, 6, 2, 5, 7, 3, 7, 3, 4, 1, 3, 0, 3, 5, 2
Offset: 0

Views

Author

Johannes W. Meijer and Nico Baken, Aug 13 2009, Aug 17 2009

Keywords

Comments

The higher order exponential integrals, see A163931, are defined by E(x,m,n) = x^(n-1)*int(E(t,m-1,n)/t^n, t=x..infinity) for m>=1 and n>=1, with E(x,m=0,n) = exp(-x).
The series expansions of the higher order exponential integrals are dominated by the gamma(k,n) and the alpha(k,n) constants, see A163927.
The values of the gamma(k,n) = G(k,n) coefficients can be determined with the Maple program.

Examples

			G(2,1) = 0.9890559953279725553953956515...
		

Crossrefs

Cf. A163931 (E(x,m,n)), A163927 (alpha(k,n)).
G(1,1) equals A001620 (gamma).
(gamma - G(1,n)) equals A001008(n-1)/A002805(n-1) for n>=2.
The structure of the G(k,n=1) formulas lead (replace gamma by G and Zeta by Z) to A036039.

Programs

  • Maple
    ncol:=1; nmax:=5; kmax:=nmax; for n from 1 to nmax do G(0,n):=1 od: for n from 1 to nmax do for k from 1 to kmax do G(k,n):= expand((1/k)*((gamma-sum(p^(-1),p=1..n-1))* G(k-1,n)+sum((Zeta(k-i)-sum(p^(-(k-i)),p=1..n-1))*G(i,n),i=0..k-2))) od; od: for k from 0 to kmax do G(k,ncol):=G(k,ncol) od;
  • Mathematica
    RealDigits[ N[ EulerGamma^2/2 + Pi^2/12, 105]][[1]] (* Jean-François Alcover, Nov 07 2012, from 1st formula *)

Formula

G(2,1) = gamma(2,1) = gamma^2/2+Pi^2/12.
G(k,n) = (1/k)*(gamma*G(k-1,n)) - (1/k)*Sum_{p=1..n-1}(p^(-1))* G(k-1,n) + (1/k)* Sum_{i=0..k-2}(Zeta(k-i) * G(i,n)) - (1/k)*Sum_{i=0..k-2}(Sum_{p=1..n-1}(p^(i-k)) * G(i,n)) with G(0,n) = 1 for k>=0 and n>=1.
G(k,n+1) = G(k,n) -G(k-1,n)/n.
GF(z,n) = GAMMA(n-z)/GAMMA(n).