A163936 Triangle related to the o.g.f.s. of the right-hand columns of A130534 (E(x,m=1,n)).
1, 1, 0, 2, 1, 0, 6, 8, 1, 0, 24, 58, 22, 1, 0, 120, 444, 328, 52, 1, 0, 720, 3708, 4400, 1452, 114, 1, 0, 5040, 33984, 58140, 32120, 5610, 240, 1, 0, 40320, 341136, 785304, 644020, 195800, 19950, 494, 1, 0, 362880, 3733920, 11026296, 12440064, 5765500, 1062500
Offset: 1
Examples
Triangle starts: [ 1] 1; [ 2] 1, 0; [ 3] 2, 1, 0; [ 4] 6, 8, 1, 0; [ 5] 24, 58, 22, 1, 0; [ 6] 120, 444, 328, 52, 1, 0; [ 7] 720, 3708, 4400, 1452, 114, 1, 0; [ 8] 5040, 33984, 58140, 32120, 5610, 240, 1, 0; [ 9] 40320, 341136, 785304, 644020, 195800, 19950, 494, 1, 0; The first few W1(z,p) polynomials are W1(z,p=1) = 1/(1-z); W1(z,p=2) = (1 + 0*z)/(1-z)^3; W1(z,p=3) = (2 + 1*z + 0*z^2)/(1-z)^5; W1(z,p=4) = (6 + 8*z + 1*z^2 + 0*z^3)/(1-z)^7.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
-
Maple
with(combinat): a := proc(n, m): add((-1)^(n+k+1)*binomial(2*n-1, k)*stirling1(m+n-k-1, m-k), k=0..m-1) end: seq(seq(a(n, m), m=1..n), n=1..9); # Johannes W. Meijer, revised Nov 27 2012
-
Mathematica
Table[Sum[(-1)^(n + k + 1)*Binomial[2*n - 1, k]*StirlingS1[m + n - k - 1, m - k], {k, 0, m - 1}], {n, 1, 10}, {m, 1, n}] // Flatten (* G. C. Greubel, Aug 13 2017 *)
-
PARI
for(n=1,10, for(m=1,n, print1(sum(k=0,m-1,(-1)^(n+k+1)* binomial(2*n-1,k)*stirling(m+n-k-1,m-k, 1)), ", "))) \\ G. C. Greubel, Aug 13 2017
-
PARI
\\ assuming offset = 0: E2poly(n,x) = if(n == 0, 1, x*(x-1)^(2*n)*deriv((1-x)^(1-2*n)*E2poly(n-1,x))); { for(n = 0, 9, print(Vec(E2poly(n,x)))) } \\ Peter Luschny, Feb 12 2021
Formula
a(n, m) = Sum_{k=0..(m-1)} (-1)^(n+k+1)*binomial(2*n-1,k)*Stirling1(m+n-k-1,m-k), for 1 <= m <= n.
Assuming offset = 0 the T(n, k) are the coefficients of recursively defined polynomials. T(n, k) = [x^k] x^n*E2poly(n, 1/x), where E2poly(n, x) = x*(x - 1)^(2*n)*d_{x}((1 - x)^(1 - 2*n)*E2poly(n - 1, x))) for n >= 1 and E2poly(0, x) = 1. - Peter Luschny, Feb 12 2021
Comments