A163940 Triangle related to the divergent series 1^m*1! - 2^m*2! + 3^m*3! - 4^m*4! + ... for m >= -1.
1, 1, 0, 1, 2, 0, 1, 5, 3, 0, 1, 9, 17, 4, 0, 1, 14, 52, 49, 5, 0, 1, 20, 121, 246, 129, 6, 0, 1, 27, 240, 834, 1039, 321, 7, 0, 1, 35, 428, 2250, 5037, 4083, 769, 8, 0, 1, 44, 707, 5214, 18201, 27918, 15274, 1793, 9, 0, 1, 54, 1102, 10829, 54111, 133530, 145777, 55152, 4097, 10, 0
Offset: 0
Examples
The first few triangle rows are: [1] [1, 0] [1, 2, 0] [1, 5, 3, 0] [1, 9, 17, 4, 0] [1, 14, 52, 49, 5, 0] The first few M(x,m) are: M(x,m=0) = 1 M(x,m=1) = 1 + 0*x M(x,m=2) = 1 + 2*x + 0*x^2 M(x,m=3) = 1 + 5*x + 3*x^2 + 0*x^3 The first few ST(x,m) are: ST(x,m=-1) = 1 ST(x,m=0) = 1 + 0*x ST(x,m=1) = 1 + 1*x + 0*x^2 ST(x,m=2) = 1 + 3*x + x^2 + 0*x^3 ST(x,m=3) = 1 + 6*x + 7*x^2 + x^3 + 0*x^4 The first few g(x,m) are: g(x,-1) = (-1)*(- (1)*Ei(1,1/x)*exp(1/x))/x^0 g(x,0) = (1)*((1)*x - (1)*Ei(1,1/x)*exp(1/x))/x^1 g(x,1) = (-1)*((1)*x - (1+ x)*Ei(1,1/x)*exp(1/x))/x^2 g(x,2) = (1)*((1+2*x)*x - (1+3*x+x^2)*Ei(1,1/x)*exp(1/x))/x^3 g(x,3) = (-1)*((1+5*x+3*x^2)*x - (1+6*x+7*x^2+x^3)*Ei(1,1/x)*exp(1/x))/x^4
Links
- G. H. Hardy, Divergent Series, Oxford University Press, 1949. pp. 26-29 and pp. 7-8.
- Maurice de Gosson, Branko Dragovich and Andrei Khrennikov, Some p-adic differential equations, (see Section 5), arxiv:math-ph/0010023, Oct 2000.
Crossrefs
The row sums equal A040027 (Gould).
Programs
-
Maple
nmax := 10; for p from 1 to nmax do Gf(p) := convert(series(1/((1-(p-1)*x)^2*product((1-k1*x), k1=1..p-2)), x, nmax+1-p), polynom); for q from 0 to nmax-p do a(p+q-1, q) := coeff(Gf(p), x, q) od: od: seq(seq(a(n, k), k=0..n), n=0..nmax-1); # End program 1 nmax1:=nmax; A040027 := proc(n): if n = -1 then 0 elif n= 0 then 1 else add(binomial(n, k1-1)*A040027(n-k1), k1 = 1..n) fi: end: A000110 := proc(n) option remember; if n <= 1 then 1 else add( binomial(n-1, i) * A000110(n-1-i), i=0..n-1); fi; end: A073003 := - exp(1) * Ei(-1): for n from -1 to nmax1 do g(1, n) := (-1)^n * (A040027(n) - A000110(n+1) * A073003) od; # End program 2
-
Mathematica
nmax = 11; For[p = 1, p <= nmax, p++, gf = 1/((1-(p-1)*x)^2*Product[(1-k1*x), {k1, 1, p-2}]) + O[x]^(nmax-p+1) // Normal; For[q = 0, q <= nmax-p, q++, a[p+q-1, q] = Coefficient[gf, x, q]]]; Table[a[n, k], {n, 0, nmax-1}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 02 2019, from 1st Maple program *)
Formula
The generating functions of the right hand columns are Gf(p, x) = 1/((1 - (p-1)*x)^2 * Product_{k = 1..p-2} (1-k*x) ); Gf(1, x) = 1. For the first right hand column p = 1, for the second p = 2, etc..
From Peter Bala, Jul 23 2013: (Start)
Conjectural explicit formula: T(n,k) = Stirling2(n,n-k) + (n-k)*Sum_{j = 0..k-1} (-1)^j*Stirling2(n, n+1+j-k)*j! for 0 <= k <= n.
The n-th row polynomial R(n,x) appears to satisfy the recurrence equation R(n,x) = n*x^(n-1) + Sum_{k = 1..n-1} binomial(n,k+1)*x^(n-k-1)*R(k,x). The row polynomials appear to have only real zeros. (End)
Extensions
Edited by Johannes W. Meijer, Sep 23 2012
Comments