A163949
The number of functions in a finite set that are not obtainable by a composition power of any other function. Similar to A163947, but it excludes self compositions.
Original entry on oeis.org
0, 3, 15, 138, 1720, 27180, 522984
Offset: 1
A163951
The number of functions in a finite set for which the sequence of composition powers ends in a length 2 cycle.
Original entry on oeis.org
0, 0, 1, 9, 93, 1155, 17025, 292383, 5752131, 127790505, 3167896005, 86756071545, 2602658092419, 84917405260779, 2994675198208785, 113538315994418175, 4606094297461892895, 199122610252964803857, 9139190793845641425261, 443881600924216704982425
Offset: 0
Any transposition (or disjoint combination) is one element to be counted.
When n=2, there is only one, and a(2)=1. When n=3, there are only 3 transpositions, but there are other 6 elements, for instance
f:{1,2,3}->{2,1,1} gives fof:{1,2,3}->{1,2,2} and fofof=f (cycle 2),
(the others are similar), thus giving a(3)=9.
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
a:= n-> A(n, 2) -A(n, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 19 2014
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[(i - 1)!^j*multinomial[ n, Join[{n - i*j}, Table[i, j]]]/j!*b[n - i*j, i - 1], {j, 0, n/i}]]];
A[n_, k_] := Sum[Binomial[n-1, j-1]*n^(n-j)*b[j, Min[j, k]], {j, 0, n}];
a[0] = 0; a[n_] := A[n, 2] - A[n, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)
A163952
The number of functions in a finite set for which the sequence of composition powers ends in a length 3 cycle.
Original entry on oeis.org
0, 0, 0, 2, 32, 480, 7880, 145320, 3009888, 69554240, 1779185360, 49995179520, 1532580072320, 50934256044672, 1825145974743000, 70172455476381440, 2882264153273207360, 125985060813367664640, 5840066736661562391968, 286204501001426735001600
Offset: 0
Any period 3 permutation (or disjoint combinations) is one element to be counted.
For n=3, where there are only 2 cases: f1:{1,2,3}->{2,3,1} and f2:{1,2,3}->{3,1,2} but for n>3 there are other elements (non-permutations) to be counted (for instance, with n=5, we count with f:{1,2,3,4,5}->{2,4,5,3,4}).
-
b:= proc(n, m) option remember; `if`(m>3, 0, `if`(n=0, x^m, add(
(j-1)!*b(n-j, ilcm(m, j))*binomial(n-1, j-1), j=1..n)))
end:
a:= n-> coeff(add(b(j, 1)*n^(n-j)*binomial(n-1, j-1), j=0..n), x, 3):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 14 2017
-
b[n_, m_] := b[n, m] = If[m>3, 0, If[n == 0, x^m, Sum[(j - 1)! b[n - j, LCM[m, j]] Binomial[n - 1, j - 1], {j, 1, n}]]];
a[n_] := If[n==0, 0, Coefficient[Sum[b[j, 1] n^(n-j) Binomial[n-1, j-1], {j, 0, n}], x, 3]];
a /@ Range[0, 25] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)
A163948
The number of functions on a finite set that are obtainable by a composition power (excluding identity as power).
Original entry on oeis.org
1, 4, 21, 172, 1725, 21066, 307111
Offset: 1
A163950
The number of functions in a finite set that can be expressed by a composition power of another function. (It differs from A163948, as it excludes self compositions).
Original entry on oeis.org
1, 1, 12, 118, 1405, 19476, 300559
Offset: 1
Showing 1-5 of 5 results.
Comments