A164133 Primes p such that 4*p and 6*p are each the sum of two consecutive primes.
2, 3, 13, 43, 127, 167, 613, 647, 1033, 1483, 1543, 2297, 2927, 3701, 3823, 4463, 5101, 5417, 5657, 6133, 8081, 9227, 11273, 11833, 12511, 13291, 13873, 17627, 19853, 20011, 21313, 21727, 22193, 23041, 23059, 23081, 23159, 24443, 26347, 26947, 27407, 27527
Offset: 1
Keywords
Examples
p=13 is in the sequence because 4*13 = 52 = A001043(9) and 6*13 = 78 = A001043(12) are both in A001043.
Links
- Robert Israel, Table of n, a(n) for n = 1..3000
Programs
-
Maple
P:= select(isprime, [2,seq(i,i=3..10^6)]): PS:= P[1..-2] + P[2..-1]: convert(P,set) intersect convert(1/4 * PS, set) intersect convert(1/6*PS,set); # Robert Israel, Dec 08 2024
-
Mathematica
stcpQ[n_]:=Module[{a=4n,b=6n},a==NextPrime[a/2]+NextPrime[a/2,-1]&&b== NextPrime[b/2]+NextPrime[b/2,-1]]; Select[Prime[Range[3100]],stcpQ] (* Harvey P. Dale, May 01 2019 *)
Extensions
Extended by R. J. Mathar, Aug 27 2009