A176849 Triangle read by rows which contains the (6n)-th row of the Pascal triangle in row n.
1, 1, 6, 15, 20, 15, 6, 1, 1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1, 1, 18, 153, 816, 3060, 8568, 18564, 31824, 43758, 48620, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1, 1, 24, 276, 2024, 10626, 42504, 134596, 346104, 735471, 1307504
Offset: 0
Examples
1; 1, 6, 15, 20, 15, 6, 1; 1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1; 1, 18, 153, 816, 3060, 8568, 18564, 31824, 43758, 48620, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1; 1, 24, 276, 2024, 10626, 42504, 134596, 346104, 735471, 1307504, 1961256, 2496144, 2704156, 2496144, 1961256, 1307504, 735471, 346104, 134596, 42504, 10626, 2024, 276, 24, 1;
Crossrefs
Cf. A164278
Programs
-
Mathematica
t[n_, m_] := Binomial[6*n, m]; Table[Table[t[n, m], {m, 0, 6*n}], {n, 0, 10}]; Flatten[%]
Formula
T(n,m)=binomial(6*n, m) = A007318(6*n,m), 0<=m<=n.
Comments