A164413 Number of binary strings of length n with no substrings equal to 0000, 0001 or 1001.
1, 2, 4, 8, 13, 22, 36, 58, 94, 152, 246, 398, 644, 1042, 1686, 2728, 4414, 7142, 11556, 18698, 30254, 48952, 79206, 128158, 207364, 335522, 542886, 878408, 1421294, 2299702, 3720996, 6020698, 9741694, 15762392, 25504086, 41266478, 66770564, 108037042
Offset: 0
Links
- David A. Corneth, Table of n, a(n) for n = 0..1999 (terms n = 4..500 from R. H. Hardin)
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
PARI
Vec(-(x^2+1)*(x^2-x+1)*(x+1)^2/(x^2+x-1) + O(x^50)) \\ Colin Barker, Oct 27 2017
-
PARI
first(n) = {my(start = [1, 2, 4, 8, 13, 22, 36]); if(n <= 7, return(vector(n+1, i, start[i]))); res = concat(start, vector(n-7)); for(i=8, n, res[i] = res[i-1] + res[i-2]); res} \\ David A. Corneth, Oct 27 2017
Formula
From Colin Barker, Oct 27 2017: (Start)
G.f.: -(x^2+1)*(x^2-x+1)*(x+1)^2/(x^2+x-1).
a(n) = 2*(((1 - sqrt(5))/2)^n + ((1 + sqrt(5))/2)^n) for n>4.
a(n) = a(n-1) + a(n-2) for n>6.
(End)
Comments