cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164413 Number of binary strings of length n with no substrings equal to 0000, 0001 or 1001.

Original entry on oeis.org

1, 2, 4, 8, 13, 22, 36, 58, 94, 152, 246, 398, 644, 1042, 1686, 2728, 4414, 7142, 11556, 18698, 30254, 48952, 79206, 128158, 207364, 335522, 542886, 878408, 1421294, 2299702, 3720996, 6020698, 9741694, 15762392, 25504086, 41266478, 66770564, 108037042
Offset: 0

Views

Author

R. H. Hardin, Aug 14 2009

Keywords

Comments

Essentially the same as A022112. - R. J. Mathar, Nov 30 2011

Programs

  • PARI
    Vec(-(x^2+1)*(x^2-x+1)*(x+1)^2/(x^2+x-1) + O(x^50)) \\ Colin Barker, Oct 27 2017
    
  • PARI
    first(n) = {my(start = [1, 2, 4, 8, 13, 22, 36]); if(n <= 7, return(vector(n+1, i, start[i]))); res = concat(start, vector(n-7)); for(i=8, n,
    res[i] = res[i-1] + res[i-2]); res} \\ David A. Corneth, Oct 27 2017

Formula

From Colin Barker, Oct 27 2017: (Start)
G.f.: -(x^2+1)*(x^2-x+1)*(x+1)^2/(x^2+x-1).
a(n) = 2*(((1 - sqrt(5))/2)^n + ((1 + sqrt(5))/2)^n) for n>4.
a(n) = a(n-1) + a(n-2) for n>6.
(End)