cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A324295 Numbers k such that s(k) = s(k+1) where s(k) is the sum of divisors of k that are smaller than sqrt(k) (A070039).

Original entry on oeis.org

2, 3, 4, 186, 318, 434, 473, 582, 730, 978, 1024, 1035, 1245, 1357, 1397, 1506, 1661, 1902, 2085, 2116, 2224, 2329, 2453, 2505, 2506, 2770, 2954, 3144, 3345, 3377, 3624, 3641, 3765, 3790, 3882, 4037, 4172, 4438, 4898, 4938, 4975, 5221, 6126, 6285, 6312, 6356
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2019

Keywords

Examples

			186 is in the sequence since A070039(186) = A070039(187) = 12.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSum[n, # &, # < Sqrt[n] &]; seq={}; s1 = 0; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n - 1]]; s1 = s2, {n, 2, 6500}]; seq

A324367 Numbers k such that s(k) = s(k+1) where s(k) is the sum of divisors of k that are larger than sqrt(k) (A238535).

Original entry on oeis.org

45, 62, 15795, 355022, 14257705, 28856174, 2324581982, 103321586193
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2019

Keywords

Comments

a(9) > 2*10^11. - Giovanni Resta, Sep 06 2019

Examples

			45 is in the sequence since A238535(45) = A238535(46) = 69.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSum[n, # &, # > Sqrt[n] &]; seq={}; s1 = 0; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n - 1]]; s1 = s2, {n, 2, 10000}]; seq

Extensions

a(8) from Giovanni Resta, Sep 06 2019

A327875 Numbers k such that s(k) = s(k+1) where s(k) is the sum of unitary, squarefree divisors of k, including 1 (A092261).

Original entry on oeis.org

8, 14, 288, 675, 735, 957, 1334, 1634, 2685, 2871, 5750, 8055, 9800, 12104, 12167, 20145, 33998, 42818, 71994, 74918, 79826, 79833, 84134, 111506, 122073, 138237, 144990, 147454, 166934, 201597, 235224, 274533, 289454, 324423, 332928, 347738, 383594, 400315
Offset: 1

Views

Author

Amiram Eldar, Sep 28 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e==1, p+1, 1]; s[n_] := Times @@ f @@@ FactorInteger[n]; s1=0; seq = {}; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n-1]]; s1 = s2, {n,1,10000}]; seq
  • PARI
    s(n)={sumdiv(n, d, d*issquarefree(d)*(gcd(d, n/d) == 1))}
    { for(k=1, 10^6, if(s(k)==s(k+1), print1(k, ", "))) } \\ Andrew Howroyd, Sep 28 2019

Formula

8 is in the sequence since A092261(8) = A092261(9) = 1.

A362400 Numbers k such that A162296(k) = A162296(k+1) > 0.

Original entry on oeis.org

135, 819, 1863, 9207, 10340, 41124, 75051, 95336, 278972, 305091, 465596, 544924, 570411, 711027, 903804, 977876, 1114695, 1327095, 1444779, 1520684, 1760571, 1987371, 2083491, 2303091, 2581928, 2842324, 2869011, 3062631, 3243140, 4043624, 4335848, 4469984, 4598091
Offset: 1

Views

Author

Amiram Eldar, Apr 18 2023

Keywords

Comments

A162296(k) = A162296(k+1) = 0 if and only if k and k+1 are both squarefree (A005117), i.e., k is in A007674.

Examples

			135 is a term since A162296(135) = A162296(136) = 216.
		

Crossrefs

Subsequence of A013929 and A068781.

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1)]; Select[Range[2, 5*10^6], (sn = s[#]) > 0 && sn == s[# + 1] &]
  • PARI
    s(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; ((p^(e + 1) - 1)/(p - 1))) -  prod(i = 1, #f~, f[i, 1] + 1);}
    lista(kmax) = {my(s1 = s(1), s2); for(k=2, kmax, s2 = s(k); if(s1 > 0 && s2 == s1, print1(k-1, ", ")); s1 = s2); }
Showing 1-4 of 4 results.