A164659 Denominators of coefficients of integrated Chebyshev polynomials T(n,x) (in increasing order of powers of x).
1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 3, 1, 5, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 5, 1, 7, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 7, 1, 9, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 11, 1, 2, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 13, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1
Offset: 0
Examples
Rational table A164658(n,m)/a(n,m) = [1], [0, 1/2], [-1, 0, 2/3], [0, -3/2, 0, 1], [1, 0, -8/3, 0, 8/5],...
Crossrefs
Programs
-
Mathematica
row[n_] := CoefficientList[Integrate[ChebyshevT[n, x], x], x] // Rest // Denominator; Table[row[n], {n, 0, 13}] // Flatten (* Jean-François Alcover, Oct 06 2016 *)
Formula
a(n,m) = denominator(b(n,m)), with int(T(n,x),x)= sum(b(n,m)*x^m,m=1..n+1), n>=0, where T(n,x) are Chebyshevs polynomials of the first kind.
Comments