cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A164723 Numbers belonging to cycles of length 2 under the Kaprekar map A151949.

Original entry on oeis.org

53955, 59994, 8733209876622, 9665429654331, 873332098766622, 966543296654331, 8764421997755322, 8765431997654322, 87333320987666622, 96654332966654331, 8733333209876666622, 9665433329666654331
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

A164726 Least element of each cycle of length 3 under the Kaprekar map A151949.

Original entry on oeis.org

64308654, 6431088654, 6433086654, 6543086544, 9751088421, 643110888654, 643310886654, 643330866654, 654310886544, 654330866544, 655430865444, 975110888421, 975310886421, 975510884421, 997510884201, 64311108888654
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

A164727 Numbers belonging to cycles of length 5 under the Kaprekar map A151949.

Original entry on oeis.org

86420987532, 86541975432, 87641975322, 88431976512, 96641975331, 8643209876532, 8654209875432, 8654319765432, 8764209875322, 8764319765322, 8765419754322, 8843209876512, 8843319766512, 8854319765412, 8874319765212
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

A164735 Number of n-digit cycles of length 3 under the Kaprekar map A151949.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 10, 0, 20, 0, 36, 0, 60, 1, 94, 4, 141, 10, 204, 21, 286, 39, 392, 66, 527, 105, 696, 159, 906, 231, 1164, 326, 1477, 449, 1854, 605, 2304, 801, 2836, 1044, 3462, 1341, 4194, 1701, 5044, 2133, 6027, 2646, 7158, 3252, 8452, 3963
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

Formula

Conjectures from Chai Wah Wu, Apr 13 2024: (Start)
a(n) = 4*a(n-2) - 6*a(n-4) + 5*a(n-6) - 5*a(n-8) + a(n-9) + 6*a(n-10) - 4*a(n-11) - 4*a(n-12) + 6*a(n-13) + a(n-14) - 5*a(n-15) + 5*a(n-17) - 6*a(n-19) + 4*a(n-21) - a(n-23) for n > 25.
G.f.: x*(-x^24 + x^22 + x^18 - x^16 + x^15 - x^13 + x^7)/((x - 1)^6*(x + 1)^5*(x^2 - x + 1)*(x^2 + x + 1)^2*(x^6 + x^3 + 1)). (End)

A164729 Numbers belonging to cycles of length 7 under the Kaprekar map A151949.

Original entry on oeis.org

420876, 642654, 750843, 840852, 851742, 860832, 862632, 43208766, 64326654, 75308643, 84308652, 85317642, 86308632, 86326632, 4332087666, 6433266654, 7533086643, 8433086652, 8533176642, 8633086632, 8633266632, 433320876666
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

Showing 1-5 of 5 results.