cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A164724 Least element of each cycle of length 2 under the Kaprekar map A151949.

Original entry on oeis.org

53955, 8733209876622, 873332098766622, 8764421997755322, 87333320987666622, 8733333209876666622, 873333332098766666622, 87333333320987666666622, 87764442219997775553222, 8733333333209876666666622
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

A164725 Numbers belonging to cycles of length 3 under the Kaprekar map A151949.

Original entry on oeis.org

64308654, 83208762, 86526432, 6431088654, 6433086654, 6543086544, 8321088762, 8332087662, 8653266432, 8655264432, 8732087622, 8765264322, 9751088421, 9755084421, 9775084221, 643110888654, 643310886654, 643330866654
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

A164728 Least element of each cycle of length 5 under the Kaprekar map A151949.

Original entry on oeis.org

86420987532, 8643209876532, 8654209875432, 8764209875322, 864332098766532, 865432098765432, 876432098765322, 876542098754322, 885432098765412, 86433320987666532, 86543320987665432, 87643320987665322
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

A164735 Number of n-digit cycles of length 3 under the Kaprekar map A151949.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 10, 0, 20, 0, 36, 0, 60, 1, 94, 4, 141, 10, 204, 21, 286, 39, 392, 66, 527, 105, 696, 159, 906, 231, 1164, 326, 1477, 449, 1854, 605, 2304, 801, 2836, 1044, 3462, 1341, 4194, 1701, 5044, 2133, 6027, 2646, 7158, 3252, 8452, 3963
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

Formula

Conjectures from Chai Wah Wu, Apr 13 2024: (Start)
a(n) = 4*a(n-2) - 6*a(n-4) + 5*a(n-6) - 5*a(n-8) + a(n-9) + 6*a(n-10) - 4*a(n-11) - 4*a(n-12) + 6*a(n-13) + a(n-14) - 5*a(n-15) + 5*a(n-17) - 6*a(n-19) + 4*a(n-21) - a(n-23) for n > 25.
G.f.: x*(-x^24 + x^22 + x^18 - x^16 + x^15 - x^13 + x^7)/((x - 1)^6*(x + 1)^5*(x^2 - x + 1)*(x^2 + x + 1)^2*(x^6 + x^3 + 1)). (End)

A164730 Least element of each cycle of length 7 under the Kaprekar map A151949.

Original entry on oeis.org

420876, 43208766, 4332087666, 433320876666, 43333208766666, 4333332087666666, 433333320876666666, 43333333208766666666, 4333333332087666666666, 433333333320876666666666
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

Showing 1-5 of 5 results.