Original entry on oeis.org
0, 12, 120, 252, 240, 660, 32760, 84, 8160, 14364, 6600, 3036, 65520, 156, 24360, 429660, 16320, 204, 69090840, 228, 541200, 75852, 30360, 12972, 2227680, 3300, 82680, 43092, 48720, 20532, 3407203800, 372, 32640, 4271652, 2040, 328020, 10087262640
Offset: 0
A290317
Triangle read by rows. Row n gives the numerators of the coefficients of the Bernoulli polynomials of the second kind (in rising powers).
Original entry on oeis.org
1, 1, 1, -1, 0, 1, 1, 0, -3, 1, -19, 0, 4, -4, 1, 9, 0, -15, 55, -15, 1, -863, 0, 72, -100, 105, -12, 1, 1375, 0, -420, 1918, -1575, 119, -35, 1, -33953, 0, 2880, -4704, 3248, -1176, 700, -24, 1, 57281, 0, -22680, 39204, -29547, 60921, -2940, 414, -63, 1, -3250433, 0, 201600, -365280, 295310, -134568, 37415, -6480, 1365, -40, 1
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 1 1
2: -1 0 1
3: 1 0 -3 1
4: -19 0 4 -4 1
5: 9 0 -15 55 -15 1
6: -863 0 72 -100 105 -12 1
7: 1375 0 -420 1918 -1575 119 -35 1
8: -33953 0 2880 -4704 3248 -1176 700 -24 1
9: 57281 0 -22680 39204 -29547 60921 -2940 414 -63 1
10: -3250433 0 201600 -365280 295310 -134568 37415 -6480 1365 -40 1
...
--------------------------------------------------------------------------------
The triangle of the rationals r(n, k) = T(n, k)/A290318(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
0: 1
1: 1/2 1
2: -1/6 0 1
3: 1/4 0 -3/2 1
4: 19/30 0 4 -4 1
5: 9/4 0 -15 55/3 -15/2 1
6: -863/84 0 72 -100 105/2 -12 1
7: 1375/24 0 -420 1918/3 -1575/4 119 -35/2
8: -33953/90 0 2880 -4704 3248 -1176 700/3 -24 1
9: 57281/20 0 -22680 39204 -29547 60921/5 -2940 414 -63/2 1
10: -3250433/132 0 201600 -365280 295310 -134568 37415 -6480 1365/2 -40 1
...
The first polynomials B2(n, x) are:
B2(0, x) = 1,
B2(1, x) = 1/2 + x,
B2(2, x) = -1/6 + x^2,
B2(3, x) = 1/4 - (3/2)*x^2 + x^3,
...
Recurrence from Sheffer a- and z-sequence:
r(3, 0) = 3*((1/2)*r(2,0) + (-1/3)*r(2,1) + (1/6)*r(2, 2)) = 3*(-1/12 + 0 + 1/6) = 1/4.
r(4, 2) = (4/2)*(1*1*r(3, 1) + 2*(-1/2)*r(3, 2) + 3*(1/6)*r(3, 3)) = 2*(0 - (-3/2) + 1/2) = 4.
General Sheffer recurrence for B2(n, x): B2(3, x) = x*B2(2, x-1) +
F(2, d_x)*B2(2, x) = ((5/6)*x - 2*x^2 + x^3) + (1/2 + (-5/12)*d/dx + (1/3)*(1/2!)*d^2/dx^2)*(-1/6+ x^2) = 1/4 - (3/2)*x^2 + x^3.The rationals s(n) begin {1/2, -5/12, 1/3, -31/120, 1/5, -41/252, ...}.
Boas-Buck identity for B2(3, x) check: (x*d/dx - 3*1)(1/4 - (3/2)*x^2 + x^3) - 3!*(x*d/dx - 1)* *((1/2)*B2(2, x)/2! + (-5/12)*B2(1, x)/1! + (3/8)) = 0.
The alpha sequence begins {1/2, -5/12, 3/8, -251/720, 95/288, -19087/60480, ...}.
Boas-Buck column k = 2 recurrence, for n=2: r(3, 2) = -(3!*1/1)*(1/2!) * alpha(0)*r(2, 2) = -(3!/2!)*(1/2)*1= -3!/4 = -3/2.
- Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
- Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.
- Steven Roman, The Umbral Calculus, Academic Press,1894, ch. 4, sect. 3.2, pp. 113-119, p. 50, p. 114.
Original entry on oeis.org
0, 2, -12, 90, -280, 1050, -13860, 70070, -48048, 4594590, -4618900, 106696590, -382444920, 966735770, -3123300180, 97045398450, -97241449760, 3409528332210, -3610088822340, 9399601637426, -13492251154200
Offset: 0
Showing 1-3 of 3 results.
Comments