cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A163205 The non-repetitive Kaprekar binary numbers in decimal.

Original entry on oeis.org

0, 9, 21, 45, 49, 93, 105, 189, 217, 225, 381, 441, 465, 765, 889, 945, 961, 1533, 1785, 1905, 1953, 3069, 3577, 3825, 3937, 3969, 6141, 7161, 7665, 7905, 8001, 12285, 14329, 15345, 15841, 16065, 16129, 24573, 28665, 30705, 31713, 32193, 32385
Offset: 1

Views

Author

Damir Olejar, Jul 23 2009

Keywords

Comments

Same as A160761, but with no repetitions. The numbers also exist in A143088, except that every first and last number is omitted from A143088's pyramid.
From Joseph Myers, Aug 29 2009: (Start)
Note that all base-2 cycles are fixed points.
Initial terms in base 2: 0, 1001, 10101, 101101, 110001, 1011101, 1101001, 10111101, 11011001, 11100001. (End)

Examples

			The number 9 is 1001 in binary. The maximum number using the same number of 0's and 1's is found and the minimum number having the same number of 0's and 1's is found to obtain the equation such as 1100 - 0011 = 1001. Repeating the same procedure gives us the same number and pattern of 0's and 1's. Therefore 9 is one of the Kaprekar numbers. If 9 did not occur before, it is counted as a number that belongs to a sequence and added to a database to skip repetitions. Numbers that end the procedure in 0 are excluded since they are not Kaprekar numbers. A number 9 can also be obtained with, let's say, 1100. Since number 9 already occurred for 1001, the number 9 occurring for 1100 is ignored to avoid repetition.
		

References

  • M. Charosh, Some Applications of Casting Out 999...'s, Journal of Recreational Mathematics 14, 1981-82, pp. 111-118.
  • D. R. Kaprekar, On Kaprekar numbers, J. Rec. Math., 13 (1980-1981), pp. 81-82.

Crossrefs

In other bases: A164997 (base 3), A165016 (base 4), A165036 (base 5), A165055 (base 6), A165075 (base 7), A165094 (base 8), A165114 (base 9), A099009 (base 10).

Programs

  • Java
    import java.util.*; class pattern { public static void main(String args[]) { int mem1 = 0; int mem2 =1; ArrayList memory = new ArrayList(); for (int i = 1; i
    				
  • Mathematica
    nmax = 10^5; f[n_] := Module[{id, sid, min, max}, id = IntegerDigits[n, 2]; min = FromDigits[sid = Sort[id], 2]; max = FromDigits[Reverse[sid], 2]; max - min]; Reap[Do[If[(fpn = FixedPoint[f, n]) > 0, Sow[fpn]], {n, 0, nmax}]][[2, 1]] // Union // Prepend[#, 0]& (* Jean-François Alcover, Apr 23 2017 *)

Formula

1. Sort all integers from the number in descending order.
2. Sort all integers from the number in ascending order.
3. Subtract ascending from descending order to obtain a new number.
4. Repeat the steps 1-3 with a new number until a repetitive sequence is obtained or until a zero is obtained.
5. Call the repetitive sequence's number a Kaprekar number, ignore zeros and repetitions from the set of the final results.

Extensions

Initial zero added for consistency with other bases by Joseph Myers, Aug 29 2009

A164884 a(n) = image of n under the base-2 Kaprekar map n -> (n with digits sorted into descending order) - (n with digits sorted into ascending order).

Original entry on oeis.org

0, 0, 1, 0, 3, 3, 3, 0, 7, 9, 9, 7, 9, 7, 7, 0, 15, 21, 21, 21, 21, 21, 21, 15, 21, 21, 21, 15, 21, 15, 15, 0, 31, 45, 45, 49, 45, 49, 49, 45, 45, 49, 49, 45, 49, 45, 45, 31, 45, 49, 49, 45, 49, 45, 45, 31, 49, 45, 45, 31, 45, 31, 31, 0, 63, 93, 93, 105, 93, 105, 105, 105, 93, 105, 105
Offset: 0

Views

Author

Joseph Myers, Aug 29 2009

Keywords

Examples

			For n = 17, 17_10 = 10001_2. So, a(17) = 11000_2 - 11_2 = 24 - 3 = 21. - _Indranil Ghosh_, Feb 01 2017
		

Crossrefs

In other bases: A164993 (base 3), A165012 (base 4), A165032 (base 5), A165051 (base 6), A165071 (base 7), A165090 (base 8), A165110 (base 9), A151949 (base 10).

Programs

  • Mathematica
    a[n_] := With[{dd = IntegerDigits[n, 2]}, FromDigits[ReverseSort[dd], 2] - FromDigits[Sort[dd], 2]];
    a /@ Range[0, 100] (* Jean-François Alcover, Jan 08 2020 *)
  • Python
    def A164884(n):
        return int("".join(sorted(bin(n)[2:],reverse=True)),2)-int("".join(sorted(bin(n)[2:])),2) # Indranil Ghosh, Feb 01 2017

Extensions

Cross-references edited by Joseph Myers, Sep 04 2009

A164885 Length of preperiodic part of trajectory of n under iteration of the base-2 Kaprekar map in A164884.

Original entry on oeis.org

0, 1, 2, 1, 2, 2, 2, 1, 2, 0, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Joseph Myers, Aug 29 2009

Keywords

Comments

All base-2 cycles are fixed points, so one less than A164886.

Crossrefs

In other bases: A164995 (base 3), A165014 (base 4), A165034 (base 5), A165053 (base 6), A165073 (base 7), A165092 (base 8), A165112 (base 9), A151962 (base 10).

Extensions

Cross-references edited by Joseph Myers, Sep 04 2009

A164886 (Length of preperiodic part) + (length of cycle) of trajectory of n under iteration of the base-2 Kaprekar map in A164884.

Original entry on oeis.org

1, 2, 3, 2, 3, 3, 3, 2, 3, 1, 2, 3, 2, 3, 3, 2, 3, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 3, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 3, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Joseph Myers, Aug 29 2009

Keywords

Comments

All base-2 cycles are fixed points, so one more than A164885.

Crossrefs

In other bases: A164996 (base 3), A165015 (base 4), A165035 (base 5), A165054 (base 6), A165074 (base 7), A165093 (base 8), A165113 (base 9), A151963 (base 10).

Extensions

Cross-references edited by Joseph Myers, Sep 04 2009

A151964 a(n) = smallest number that leads to a new cycle under the Kaprekar map of A151949.

Original entry on oeis.org

0, 102, 1001, 10001, 10003, 10045, 100001, 100147, 100155, 1000001, 10000001, 10000012, 10000024, 10001567, 100000001, 100000002, 100011555, 1000000001, 1000000003, 1000000004, 1000000005, 1000000014, 1000000024, 1000002499
Offset: 1

Views

Author

Klaus Brockhaus, Aug 19 2009

Keywords

Crossrefs

In other bases: A164887 (base 2), A165009 (base 3), A165029 (base 4), A165048 (base 5), A165068 (base 6), A165087 (base 7), A165107 (base 8), A165127 (base 9). [From Joseph Myers, Sep 05 2009]

Extensions

Extended by Joseph Myers, Aug 22 2009

A165009 a(n) = smallest number that leads to a new cycle under the base-3 Kaprekar map of A164993.

Original entry on oeis.org

0, 28, 82, 244, 730, 737, 2188, 6562, 6569, 6587, 19684, 19691, 59050, 59057, 59062, 59075, 59129, 177148, 177173, 531442, 531449, 531467, 531485, 531521, 531683, 1594324, 1594331, 1594403, 4782970, 4782977, 4782995, 4783049, 4783103
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Initial terms in base 3: 0, 1001, 10001, 100001, 1000001, 1000022, 10000001, 100000001, 100000022, 100000222.

Crossrefs

In other bases: A164887 (base 2), A165029 (base 4), A165048 (base 5), A165068 (base 6), A165087 (base 7), A165107 (base 8), A165127 (base 9), A151964 (base 10).

A165029 a(n) = smallest number that leads to a new cycle under the base-4 Kaprekar map of A165012.

Original entry on oeis.org

0, 18, 65, 66, 257, 1025, 1039, 1050, 4097, 16385, 16386, 16399, 16447, 65537, 65551, 65898, 262145, 262146, 262207, 262239, 262399, 1048577, 1048578, 1048591, 1048639, 4194305, 4194310, 4194319, 4194399, 4194559, 4194687, 4195327
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Initial terms in base 4: 0, 102, 1001, 1002, 10001, 100001, 100033, 100122, 1000001, 10000001.

Crossrefs

In other bases: A164887 (base 2), A165009 (base 3), A165048 (base 5), A165068 (base 6), A165087 (base 7), A165107 (base 8), A165127 (base 9), A151964 (base 10).

A165048 a(n) = smallest number that leads to a new cycle under the base-5 Kaprekar map of A165032.

Original entry on oeis.org

0, 8, 27, 126, 626, 3126, 15626, 78126, 390626, 1953126, 9765626, 9765824, 48828126, 244140626, 244140699, 244141624, 1220703126, 1220703127, 6103515626, 6103515639, 6103515656, 6103515699, 6103515999, 6103520624
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Initial terms in base 5: 0, 13, 102, 1001, 10001, 100001, 1000001, 10000001, 100000001, 1000000001.

Crossrefs

In other bases: A164887 (base 2), A165009 (base 3), A165029 (base 4), A165068 (base 6), A165087 (base 7), A165107 (base 8), A165127 (base 9), A151964 (base 10).

A165068 a(n) = smallest number that leads to a new cycle under the base-6 Kaprekar map of A165051.

Original entry on oeis.org

0, 38, 217, 1297, 1311, 7777, 7779, 7790, 7833, 46657, 279937, 279938, 279986, 280043, 280238, 1679617, 1681257, 10077697, 10077698, 10077710, 10077803, 10077962, 10078343, 10079524, 60466177, 60466179, 60475766, 362797057
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Initial terms in base 6: 0, 102, 1001, 10001, 10023, 100001, 100003, 100022, 100133, 1000001.

Crossrefs

In other bases: A164887 (base 2), A165009 (base 3), A165029 (base 4), A165048 (base 5), A165087 (base 7), A165107 (base 8), A165127 (base 9), A151964 (base 10).

A165087 a(n) = smallest number that leads to a new cycle under the base-7 Kaprekar map of A165071.

Original entry on oeis.org

0, 51, 344, 2402, 16808, 117650, 823544, 5764802, 40353608, 40353623, 40354466, 282475250, 1977326744, 1977326763, 13841287202, 13841287211, 13841290483, 96889010408, 96889010409, 678223072850, 678223072851, 678223072995
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Initial terms in base 7: 0, 102, 1001, 10001, 100001, 1000001, 10000001, 100000001, 1000000001, 1000000022.

Crossrefs

In other bases: A164887 (base 2), A165009 (base 3), A165029 (base 4), A165048 (base 5), A165068 (base 6), A165107 (base 8), A165127 (base 9), A151964 (base 10).
Showing 1-10 of 12 results. Next