A164894 Base-10 representation of the binary string formed by appending 10, 100, 1000, 10000, ..., etc., to 1.
1, 6, 52, 840, 26896, 1721376, 220336192, 56406065280, 28879905423616, 29573023153783296, 60565551418948191232, 248076498612011791288320, 2032242676629600594233921536, 33296264013899376135928570454016, 1091051979207454757222107396637212672
Offset: 1
Examples
a(1) = 1, also 1 in binary. a(2) = 6, or 110 in binary. a(3) = 52, or 110100 in binary. a(4) = 840, or 1101001000 in binary.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..81
Crossrefs
Programs
-
Mathematica
Table[Sum[2^((n^2 + n)/2 - (k^2 + k)/2 - 1), {k, 0, n - 1}], {n, 25}] (* Alonso del Arte, Nov 14 2013 *) Module[{nn=15,t},t=Table[10^n,{n,0,nn}];Table[FromDigits[Flatten[IntegerDigits/@Take[t,k]],2],{k,nn}]] (* Harvey P. Dale, Jan 16 2024 *)
-
Python
def a(n): return int("".join("1"+"0"*i for i in range(n)), 2) print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Jul 05 2021
-
Python
def A164894(n): return sum(1<<(k*((n<<1)-k-1)>>1)+n-1 for k in range(n)) # Chai Wah Wu, Jul 11 2025
Formula
a(n) = Sum_{k=0..n-1} 2^((n^2 + n)/2 - (k^2 + k)/2 - 1). - Alonso del Arte, Nov 15 2013
a(n) = Sum_{k=0..n-1} 2^(k*(2*n-k-1)/2+n-1). - Chai Wah Wu, Jul 11 2025
Comments