A164917 Smallest number of steps to reach prime(n) by applying the map x->A060308(x) starting from any member of A164368.
0, 1, 2, 3, 0, 4, 0, 1, 5, 0, 1, 2, 0, 6, 0, 1, 0, 2, 0, 0, 3, 1, 7, 1, 0, 0, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 8, 0, 2, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 0, 0, 3, 9, 1, 3, 0, 0, 1, 1, 0, 0, 1, 2, 1, 2, 0, 0, 0, 2, 0, 0, 0, 3, 1, 1, 0, 1, 1, 1, 0, 0, 2, 0, 3, 0, 1, 2, 3, 1, 1, 0, 0, 2
Offset: 1
Keywords
Examples
The first prime chains of the mapping with A060308 initialized with members of A164368 are 2->3->5->7->13->23->43->83->163->317->631->1259->2503->.. 11->19->37->73->139->277->547->1093->2179->4357->8713->17419->.. 17->31->61->113->223->443->883->1759->3517->7027->14051->28099->.. 29->53->103->199->397->787->1571->3137->6271->12541->25073->.. 41->79->157->313->619->1237->2473->4943->9883->19763->39521->.. 47->89->173->337->673->1327->2647->5281->10559->21107->.. The a(1) to a(4) representing the first 4 primes are all on the first chain, and need 0 to 3 steps to be reached from 2 = A164368(1). a(5) asks for the number of steps for A000040(5)=11 which is on the second chain, and needs 0 steps.
Links
- V. Shevelev, On critical small intervals containing primes, arXiv:0908.2319 [math.NT], 2009.
Programs
-
Maple
A060308 := proc(n) prevprime(2*n+1) ; end: isA164368 := proc(p) local q ; q := nextprime(floor(p/2)) ; RETURN(numtheory[pi](2*q) -numtheory[pi](p) >= 1); end: A164368 := proc(n) option remember; local a; if n = 1 then 2; else a := nextprime( procname(n-1)) ; while not isA164368(a) do a := nextprime(a) ; od: RETURN(a) ; fi; end: A164917 := proc(n) local p,a,j,q,itr ; p := ithprime(n) ; a := 1000000000000000 ; for j from 1 do q := A164368(j) ; if q > p then break; fi; itr := 0 ; while q < p do q := A060308(q) ; itr := itr+1 ; od; if q = p then if itr < a then a := itr; fi; fi; od: a ; end: seq(A164917(n),n=1..120) ; # R. J. Mathar, Sep 24 2009
-
Mathematica
A060308[n_] := NextPrime[2*n + 1, -1]; isA164368[p_] := Module[{q}, q = NextPrime[Floor[p/2]]; Return[PrimePi[2*q] - PrimePi[p] >= 1]]; A164368[n_] := A164368[n] = Module[{a}, If[n == 1, 2, a = NextPrime[ A164368[n-1]]; While[Not @ isA164368[a], a = NextPrime[a]]; Return[a]]]; A164917[n_] := Module[{p, a, j, q, itr}, p = Prime[n]; a = 10^15; For[j = 1 , True, j++, q = A164368[j]; If[q > p, Break[]]; itr = 0; While[q < p, q = A060308[q]; itr++]; If[q == p, If[itr < a, a = itr]]]; a]; Table[A164917[n], {n, 1, 120}] (* Jean-François Alcover, Dec 14 2017, after R. J. Mathar *)
Extensions
Edited, examples added and extended by R. J. Mathar, Sep 24 2009
Comments