A164930 Sum of odd prime divisors of numbers with all odd prime divisors of the form 6k+5.
5, 5, 11, 17, 5, 11, 23, 5, 29, 17, 5, 41, 11, 23, 47, 5, 53, 16, 29, 59, 17, 71, 5, 41, 83, 22, 11, 89, 23, 47, 5, 101, 53, 107, 16, 113, 28, 29, 59, 11, 5, 131, 17, 137, 71, 34, 149, 5, 41, 83, 167, 22, 173, 11, 89, 179, 23, 28, 47, 191, 197, 5, 101, 46, 53, 107, 16, 113, 227, 28
Offset: 1
Examples
a(18) = 16 because b(18)= 55 = 5*11, and 5+11 = 16.
Programs
-
Maple
isb := proc(n) fs := numtheory[factorset](n) minus {2} ; if fs = {} then RETURN(false); else for f in fs do if op(1,f) mod 6 <> 5 then RETURN(false) ; fi; od: RETURN(true) ; fi; end: b := proc(n) if n = 1 then 5; else for a from procname(n-1)+1 do if isb(a) then RETURN(a) ; fi; od: fi; end: A164930 := proc(n) local f; numtheory[factorset]( b(n)) minus {2} ; add(f,f=%) ; end: seq(A164930(n),n=1..120) ; # R. J. Mathar, Sep 09 2009
Extensions
Edited and extended by R. J. Mathar, Sep 09 2009
Comments