cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164934 Number of different ways to select 3 disjoint subsets from {1..n} with equal element sum.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 8, 22, 63, 157, 502, 1562, 4688, 15533, 50953, 165054, 562376, 1911007, 6467143, 22447463, 78021923, 271410289, 957082911, 3384587525, 11998851674, 42876440587, 153684701645, 552421854011, 1995875594696, 7231871165277, 26274832876337
Offset: 1

Views

Author

Alois P. Heinz, Aug 31 2009

Keywords

Comments

a(5) = 1, because {1,4}, {2,3}, {5} are disjoint subsets of {1..5} with element sum 5.
a(6) = 3: {1,4}, {2,3}, {5} have element sum 5, {1,5}, {2,4}, {6} have element sum 6, and {1,6}, {2,5}, {3,4} have element sum 7.

Crossrefs

Column k=3 of A196231.

Programs

  • Maple
    b:= proc(n, k, i) option remember; local m;
          m:= i*(i+1)/2;
          if k>n then b(k, n, i)
        elif k>=0 and n+k>m or k<0 and n-2*k>m then 0
        elif [n, k, i] = [0, 0, 0] then 1
        else b(n, k, i-1)+b(n+i, k+i, i-1)+b(n-i, k, i-1)+b(n, k-i, i-1)
          fi
        end:
    a:= proc(n) option remember;
          `if`(n>2, b(n, n, n-1)/2+ a(n-1), 0)
        end:
    seq(a(n), n=1..20);
  • Mathematica
    b[n_, k_, i_] := b[n, k, i] = Module[{m = i*(i+1)/2}, Which[k>n , b[k, n, i], k >= 0 && n+k>m || k<0 && n-2*k > m, 0, {n, k, i} == {0, 0, 0}, 1, True, b[n, k, i-1] + b[n+i, k+i, i-1] + b[n-i, k, i-1] + b[n, k-i, i-1]]]; a[n_] := a[n] = If[n>2, b[n, n, n-1]/2 + a[n-1], 0]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Feb 05 2015, after Alois P. Heinz *)

Formula

Conjecture: a(n) ~ 4^n / (Pi * sqrt(3) * n^3). - Vaclav Kotesovec, Oct 16 2014