A164949 Number of different ways to select 4 disjoint subsets from {1..n} with equal element sum.
0, 0, 0, 0, 0, 0, 1, 3, 9, 23, 67, 203, 693, 2584, 9929, 37480, 137067, 522854, 2052657, 8199728, 33456333, 137831268, 574295984, 2392149818, 9950364020, 41860671346, 177512155194, 757447761138, 3254519322231, 14049972380612, 60960849334377, 265354255338637
Offset: 1
Keywords
Examples
a(7) = 1, because {1,6}, {2,5}, {3,4}, {7} are disjoint subsets of {1..7} with element sum 7. a(8) = 3: {1,6}, {2,5}, {3,4}, {7} have element sum 7, {1,7}, {2,6}, {3,5}, {8} have element sum 8, and {1,8}, {2,7}, {3,6}, {4,5} have element sum 9.
Programs
-
Maple
b:= proc() option remember; local i, j; `if`(args[1]=0 and args[2]=0 and args[3]=0 and args[4]=0, 1, `if`(add(args[j], j=1..4)> args[5] *(args[5]-1)/2, 0, b(args[j]$j=1..4, args[5]-1)) +add(`if`(args[j] -args[5]<0, 0, b(sort([seq(args[i] -`if`(i=j, args[5], 0), i=1..4)])[], args[5]-1)), j=1..4)) end: a:= n-> add(b(k$4, n), k=7..floor(n*(n+1)/8)) /24: seq(a(n), n=1..20);
-
Mathematica
b[l_, n_, k_] := b[l, n, k] = Module[{i, j}, If[l == Array[0&, k], 1, If[ Total[l] > n(n-1)/2, 0, b[l, n-1, k]] + Sum[If[l[[j]]-n < 0, 0, b[Sort[ Table[l[[i]] - If[i==j, n, 0], {i, 1, k}]], n-1, k]], {j, 1, k}]]]; T[n_, k_] := Sum[b[Array[t&, k], n, k], {t, 2k-1, Floor[n(n+1)/(2k)]}]/k!; a[n_] := T[n, 4]; Array[a, 20] (* Jean-François Alcover, Jun 08 2018, after Alois P. Heinz's Maple code in A196231 *)