cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164949 Number of different ways to select 4 disjoint subsets from {1..n} with equal element sum.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 9, 23, 67, 203, 693, 2584, 9929, 37480, 137067, 522854, 2052657, 8199728, 33456333, 137831268, 574295984, 2392149818, 9950364020, 41860671346, 177512155194, 757447761138, 3254519322231, 14049972380612, 60960849334377, 265354255338637
Offset: 1

Views

Author

Alois P. Heinz, Sep 01 2009

Keywords

Examples

			a(7) = 1, because {1,6}, {2,5}, {3,4}, {7} are disjoint subsets of {1..7} with element sum 7.
a(8) = 3: {1,6}, {2,5}, {3,4}, {7} have element sum 7, {1,7}, {2,6}, {3,5}, {8} have element sum 8, and {1,8}, {2,7}, {3,6}, {4,5} have element sum 9.
		

Crossrefs

Column k=4 of A196231.

Programs

  • Maple
    b:= proc() option remember; local i, j; `if`(args[1]=0 and args[2]=0 and args[3]=0 and args[4]=0, 1, `if`(add(args[j], j=1..4)> args[5] *(args[5]-1)/2, 0, b(args[j]$j=1..4, args[5]-1)) +add(`if`(args[j] -args[5]<0, 0, b(sort([seq(args[i] -`if`(i=j, args[5], 0), i=1..4)])[], args[5]-1)), j=1..4)) end: a:= n-> add(b(k$4, n), k=7..floor(n*(n+1)/8)) /24: seq(a(n), n=1..20);
  • Mathematica
    b[l_, n_, k_] := b[l, n, k] = Module[{i, j}, If[l == Array[0&, k], 1, If[ Total[l] > n(n-1)/2, 0, b[l, n-1, k]] + Sum[If[l[[j]]-n < 0, 0, b[Sort[ Table[l[[i]] - If[i==j, n, 0], {i, 1, k}]], n-1, k]], {j, 1, k}]]];
    T[n_, k_] := Sum[b[Array[t&, k], n, k], {t, 2k-1, Floor[n(n+1)/(2k)]}]/k!;
    a[n_] := T[n, 4];
    Array[a, 20] (* Jean-François Alcover, Jun 08 2018, after Alois P. Heinz's Maple code in A196231 *)