cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A210557 Triangle of coefficients of polynomials u(n,x) jointly generated with A210558; see the Formula section.

Original entry on oeis.org

1, 1, 2, 1, 3, 5, 1, 4, 10, 12, 1, 5, 16, 30, 29, 1, 6, 23, 56, 87, 70, 1, 7, 31, 91, 185, 245, 169, 1, 8, 40, 136, 334, 584, 676, 408, 1, 9, 50, 192, 546, 1158, 1784, 1836, 985, 1, 10, 61, 260, 834, 2052, 3850, 5312, 4925, 2378, 1, 11, 73, 341, 1212, 3366
Offset: 1

Views

Author

Clark Kimberling, Mar 22 2012

Keywords

Comments

Row sums: powers of 3 (see A000244).
For a discussion and guide to related arrays, see A208510.
Subtriangle of (1, 0, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 23 2012
Up to reflection at the vertical axis, this triangle coincides with the triangle given in A164981, i.e., the numbers are the same just read row-wise in the opposite direction. - Christine Bessenrodt, Jul 20 2012

Examples

			First five rows:
  1;
  1, 2;
  1, 3,  5;
  1, 4, 10, 12;
  1, 5, 16, 30, 29;
First three polynomials u(n,x): 1, 1 + 2x, 1 + 3x + 5x^2.
From _Philippe Deléham_, Mar 23 2012: (Start)
(1, 0, -1/2, 1/2, 0, 0, ...) DELTA (0, 2, 1/2, -1/2, 0, 0, ...) begins:
  1;
  1, 0;
  1, 2,  0;
  1, 3,  5,  0;
  1, 4, 10, 12,  0;
  1, 5, 16, 30, 29, 0; (End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
    v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A210557 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A210558 *)

Formula

u(n,x) = x*u(n-1,x) + x*v(n-1,x)+1,
v(n,x) = 2x*u(n-1,x) + (x+1)v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 23 2012. (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1 - 2*y*x + y*x^2 - y^2*x^2)/(1 - x - 2*y*x + y*x^2 - y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n. (End)

A164984 Odd (Jacobsthal) triangle.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 5, 9, 5, 1, 11, 23, 19, 7, 1, 21, 57, 61, 33, 9, 1, 43, 135, 179, 127, 51, 11, 1, 85, 313, 493, 433, 229, 73, 13, 1, 171, 711, 1299, 1359, 891, 375, 99, 15, 1, 341, 1593, 3309, 4017, 3141, 1641, 573, 129, 17, 1
Offset: 1

Views

Author

Mark Dols, Sep 03 2009, Sep 06 2009

Keywords

Comments

Alternate diagonal sums give A008619.
Diagonals sums give A097076. - Philippe Deléham, Oct 13 2013

Examples

			1
1,1
3,3,1
5,9,5,1
11,23,19,7,1
21,57,61,33,9,1
Pascal-like triangle based on a right-triangular sum (with the top multiplied by 2): For n=13 a(13)=2*a(3)+a(5)+a(8)+a(9)= 2+3+9+5=19.
		

Crossrefs

Formula

Excel formula: C6=2*C4+C5+B5+B4 with C5=a(1)=1 and C6=a(2)
T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k) + T(n-2,k-1). - Philippe Deléham, Oct 13 2013
Showing 1-2 of 2 results.