cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164988 Number of ways to select disjoint subsets out of {1..n} such that their (sorted) element sums give the list of divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 7, 2, 10, 9, 7, 9, 21, 8, 29, 12, 31, 67, 56, 11, 79, 167, 105, 85, 137, 37, 181, 248, 346, 893, 299, 106, 404, 1974, 993, 338, 669, 724, 853, 3335, 1068, 8757, 1371, 852, 2422, 9157, 7124, 17168, 2702, 11606, 6390, 10782, 17681, 68538
Offset: 1

Views

Author

Alois P. Heinz, Sep 03 2009

Keywords

Examples

			a(9) = 3: subset selections are [{1},{3},{9}], [{1},{3},{2,7}], [{1},{3},{4,5}].
a(10) = 3: [{1},{2},{5},{10}], [{1},{2},{5},{3,7}], [{1},{2},{5},{4,6}].
a(11) = 7: [{1},{11}], [{1},{2,9}], [{1},{3,8}], [{1},{4,7}], [{1},{5,6}], [{1},{2,3,6}], [{1},{2,4,5}].
a(12) = 2: [{1},{2},{3},{4},{6},{12}], [{1},{2},{3},{4},{6},{5,7}].
		

Crossrefs

Programs

  • Maple
    with(numtheory): b:= proc() option remember; local i, j, t, m; m:= args[nargs]; if nargs=1 then 1 elif args[1]=0 then b(args[t] $t=2..nargs) elif m=0 or add(args[i], i=1..nargs-1)> m*(m+1)/2 then 0 else b(args[t] $t=1..nargs-1, m-1) +add(`if`(args[j]-m<0, 0, b(sort([seq(args[i] -`if`(i=j, m, 0), i=1..nargs-1)])[], m-1)), j=1..nargs-1) fi end: a:= n-> b(divisors(n)[], n): seq(a(n), n=1..40);
  • Mathematica
    $RecursionLimit = 1000; b[args__] := b[args] = Module[{i, j, t, m, nargs}, nargs = Length[{args}]; m = Last[{args}]; Which [nargs == 1, 1, {args}[[1]] == 0, b @@ Rest[{args}], m == 0 || Total[Most[{args}]] > m*(m+1)/2, 0, True, b[Sequence @@ Most[{args}], m-1] + Sum [If[{args}[[j]] - m < 0, 0, b[Sequence @@ Sort[Table[{args}[[i]] - If [i == j, m, 0], {i, 1, nargs-1}]], m-1]], {j, 1, nargs-1}]] ]; a[n_] := b[Sequence @@ Divisors[n], n]; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 1, 95}] (* Jean-François Alcover, Dec 13 2013, translated from Maple *)

Formula

a(p) = A025147(p) for p prime. - Charlie Neder, Jan 15 2019