A164990 Number of square involutions of n.
1, 2, 4, 10, 22, 52, 114, 260, 564, 1256, 2698, 5908, 12588, 27224, 57620, 123432, 259816, 552400, 1157466, 2446004, 5105532, 10735352, 22334524, 46766200, 97021272, 202431152, 418935364, 871425160, 1799558584
Offset: 1
Examples
a(5)=22, in fact the 22 square involutions of 5 are given by all the involutions of 5, which are 26, minus 14325, 15342, 52341, 42315 which are not square.
References
- F. Disanto, A. Frosini, S. Rinaldi, Square Involutions, Proceedings of Permutation Patterns, July 13-17, 2009, Florence.
- T. Mansour, S. Severini, Grid polygons from permutations and their enumeration by the kernel method, 19th Conference on Formal Power Series and Algebraic Combinatorics, Tianjin, China, July 2-6, 2007.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- F. Disanto, A. Frosini, S. Rinaldi, Square involutions, J. Int. Seq. 14 (2011) # 11.3.5.
- T. Mansour, S. Severini, Grid polygons from permutations and their enumeration by the kernel method, arXiv:math/0603225 [math.CO], 2006.
Crossrefs
Cf. A128652.
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!( x*(1-x)^2/(1-2*x)^2 - x^3/((1-2*x)*Sqrt(1-4*x^2)) )); // G. C. Greubel, Nov 25 2018 -
Mathematica
Rest[CoefficientList[Series[x(1-x)^2/(1-2x)^2 - x^3/((1-2x) Sqrt[1-4x^2]), {x, 0, 29}], x]] (* Michael De Vlieger, Nov 25 2018 *)
-
PARI
my(x='x+O('x^30)); Vec(x*(1-x)^2/(1-2*x)^2 - x^3/((1-2*x)*sqrt(1- 4*x^2))) \\ G. C. Greubel, Nov 25 2018
-
Sage
s=(x*(1-x)^2/(1-2*x)^2 -x^3/((1-2*x)*sqrt(1-4*x^2))).series(x, 30); a= s.coefficients(x, sparse=False); a[1:] # G. C. Greubel, Nov 25 2018
Formula
a(n) = (n+2)*2^(n-3) - (n-2)*C(n-3,(n-3)/2), n > 1.
G.f.: x*(1-x)^2/(1-2*x)^2 - x^3/((1-2*x)*sqrt(1-4*x^2)).
(n-3)*(n-8)*a(n) + 2*(-n^2 + 10*n - 20)*a(n-1) + 4*(-n^2 + 12*n - 31)*a(n-2) + 8*(n-4)*(n-7)*a(n-3) = 0.- R. J. Mathar, Jul 24 2012