A165064 Number of cycles of n-digit numbers (including fixed points) under the base-6 Kaprekar map A165051.
1, 0, 1, 1, 2, 4, 1, 5, 2, 7, 3, 9, 4, 13, 7, 17, 8, 24, 11, 30, 16, 37, 21, 46, 27, 57, 34, 68, 42, 83, 52, 96, 64, 113, 77, 132, 90, 153, 107, 175, 125, 200, 145, 226, 168, 256, 191, 288, 217, 323, 247, 358, 278, 399, 312, 441, 348, 487, 387, 536, 429, 587, 475, 641
Offset: 1
Links
- Joseph Myers, Table of n, a(n) for n=1..100
- H. Hanslik, E. Hetmaniok, I. Sobstyl, et al., Orbits of the Kaprekar's transformations-some introductory facts, Zeszyty Naukowe Politechniki Śląskiej, Seria: Matematyka Stosowana z. 5, Nr kol. 1945; 2015.
- Index entries for the Kaprekar map
Crossrefs
Formula
G.f.: x*(1 + x + 2*x^5 - 2*x^7 - 3*x^8 - 3*x^9 - x^10 + 2*x^11 + 4*x^12 + 4*x^13 + 4*x^14 + x^15 - 3*x^16 - 3*x^17 - 2*x^18 - x^19 + x^21 + x^22) / ((1 - x)^4*(1 + x)^3*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)) (conjectured). - Colin Barker, Jun 01 2017