cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A165055 List of fixed points of the base-6 Kaprekar map A165051.

Original entry on oeis.org

0, 105, 5600, 27195, 33860, 42925, 1275170, 1657225, 6018495, 45962330, 47681900, 56319925, 60331825, 277695950, 348285175, 1305060855, 2151904825, 2175976225, 10363227560, 12973622725, 59994427550, 60063064790, 73115587525
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Initial terms in base 6: 0, 253, 41532, 325523, 420432, 530421, 43155322, 55304201, 332555223, 4321044322.

Crossrefs

In other bases: A163205 (base 2), A164997 (base 3), A165016 (base 4), A165036 (base 5), A165075 (base 7), A165094 (base 8), A165114 (base 9), A099009 (base 10).

A164733 Number of n-digit fixed points under the Kaprekar map A151949.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 2, 2, 3, 1, 5, 1, 6, 2, 8, 2, 12, 3, 14, 5, 17, 7, 21, 8, 25, 12, 30, 14, 36, 17, 43, 21, 49, 25, 58, 31, 66, 36, 75, 43, 85, 49, 96, 58, 109, 66, 121, 75, 136, 86, 150, 96, 167, 109, 184, 121, 202, 136, 222, 150, 242, 167, 265, 185, 287, 202, 313, 222, 338
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

Bisections: A309223, A309224.
In other bases: A004526 (base 2, adjusted to start 1, 0, 0, 1, 1, ...), A008615 (base 3), A165027 (base 4), A008617 (base 5), A165066 (base 6), A008722 (base 7, conjecturally), A165105 (base 8), A165125 (base 9). [From Joseph Myers, Sep 05 2009]

Formula

Conjectures from Chai Wah Wu, Apr 13 2024: (Start)
a(n) = a(n-2) + a(n-6) - a(n-8) + a(n-9) - a(n-11) + a(n-14) - a(n-15) - a(n-16) + a(n-17) - a(n-20) + a(n-22) - a(n-23) + a(n-25) + a(n-29) - a(n-31) for n > 33.
G.f.: x*(-x^32 + x^31 - x^29 + x^28 - x^27 + x^26 - x^24 + 2*x^23 - x^22 + x^21 + x^20 + 2*x^18 - x^17 + x^16 + 2*x^15 - 3*x^14 + 2*x^13 - x^12 + x^11 - x^9 + 2*x^8 - x^6 + x^5 - x^4 + x^3 + 1)/(x^31 - x^29 - x^25 + x^23 - x^22 + x^20 - x^17 + x^16 + x^15 - x^14 + x^11 - x^9 + x^8 - x^6 - x^2 + 1). (End)

A165064 Number of cycles of n-digit numbers (including fixed points) under the base-6 Kaprekar map A165051.

Original entry on oeis.org

1, 0, 1, 1, 2, 4, 1, 5, 2, 7, 3, 9, 4, 13, 7, 17, 8, 24, 11, 30, 16, 37, 21, 46, 27, 57, 34, 68, 42, 83, 52, 96, 64, 113, 77, 132, 90, 153, 107, 175, 125, 200, 145, 226, 168, 256, 191, 288, 217, 323, 247, 358, 278, 399, 312, 441, 348, 487, 387, 536, 429, 587, 475, 641
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Crossrefs

In other bases: A004526 (base 2, adjusted to start 1, 0, 0, 1, 1, ...), A165006 (base 3), A165025 (base 4), A165045 (base 5), A165084 (base 7), A165103 (base 8), A165123 (base 9), A164731 (base 10).

Formula

G.f.: x*(1 + x + 2*x^5 - 2*x^7 - 3*x^8 - 3*x^9 - x^10 + 2*x^11 + 4*x^12 + 4*x^13 + 4*x^14 + x^15 - 3*x^16 - 3*x^17 - 2*x^18 - x^19 + x^21 + x^22) / ((1 - x)^4*(1 + x)^3*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)) (conjectured). - Colin Barker, Jun 01 2017

A165065 Number of n-digit numbers in a cycle (including fixed points) under the base-6 Kaprekar map A165051.

Original entry on oeis.org

1, 0, 1, 6, 3, 6, 2, 13, 3, 10, 4, 15, 6, 21, 10, 29, 13, 40, 18, 52, 26, 65, 35, 82, 46, 101, 59, 123, 74, 149, 92, 176, 114, 207, 138, 243, 164, 282, 195, 325, 229, 372, 267, 423, 310, 479, 355, 541, 405, 607, 461, 677, 521, 754, 586, 836, 656, 924, 731, 1019, 812
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Crossrefs

In other bases: A004526 (base 2, adjusted to start 1, 0, 0, 1, 1, ...), A165007 (base 3), A165026 (base 4), A165046 (base 5), A165085 (base 7), A165104 (base 8), A165124 (base 9), A164732 (base 10).

A165027 Number of n-digit fixed points under the base-4 Kaprekar map A165012.

Original entry on oeis.org

1, 0, 1, 1, 0, 3, 1, 3, 3, 5, 3, 8, 5, 9, 8, 12, 9, 16, 12, 18, 16, 22, 18, 27, 22, 30, 27, 35, 30, 41, 35, 45, 41, 51, 45, 58, 51, 63, 58, 70, 63, 78, 70, 84, 78, 92, 84, 101, 92, 108, 101, 117, 108, 127, 117, 135, 127, 145, 135, 156, 145, 165, 156, 176, 165, 188, 176, 198
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Crossrefs

In other bases: A004526 (base 2, adjusted to start 1, 0, 0, 1, 1, ...), A008615 (base 3), A008617 (base 5), A165066 (base 6), A008722 (base 7, conjecturally), A165105 (base 8), A165125 (base 9), A164733 (base 10).

Formula

Conjectures from Chai Wah Wu, Apr 13 2024: (Start)
a(n) = 2*a(n-2) + a(n-3) - a(n-4) - 2*a(n-5) + a(n-7) for n > 8.
G.f.: x*(x^7 - x^6 - 2*x^5 + x^4 + x^2 - 1)/((x - 1)^3*(x + 1)^2*(x^2 + x + 1)). (End)

A165105 Number of n-digit fixed points under the base-8 Kaprekar map A165090.

Original entry on oeis.org

1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 0, 4, 0, 4, 2, 2, 2, 4, 2, 3, 6, 5, 2, 7, 2, 6, 5, 10, 5, 8, 5, 8, 7, 9, 11, 12, 7, 11, 9, 12, 9, 21, 10, 14, 12, 15, 13, 18, 20, 18, 15, 20, 15, 23, 16, 30, 20, 23, 20, 26, 21, 27, 32, 29, 23, 32, 25, 32, 28, 43
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Crossrefs

In other bases: A004526 (base 2, adjusted to start 1, 0, 0, 1, 1, ...), A008615 (base 3), A165027 (base 4), A008617 (base 5), A165066 (base 6), A008722 (base 7, conjecturally), A165125 (base 9), A164733 (base 10).

Formula

Conjectures from Chai Wah Wu, Apr 13 2024: (Start)
a(n) = - a(n-1) + a(n-3) + 2*a(n-4) + 2*a(n-5) + a(n-6) - a(n-7) - 2*a(n-8) - 2*a(n-9) - a(n-10) + a(n-12) + a(n-13) for n > 15.
G.f.: x*(-x^14 + x^8 - x^5 + x^4 - x^2 - x - 1)/((x - 1)^3*(x + 1)^2*(x^2 + 1)*(x^2 + x + 1)*(x^4 + x^3 + x^2 + x + 1)). (End)

A165125 Number of n-digit fixed points under the base-9 Kaprekar map A165110.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 2, 2, 3, 2, 2, 1, 4, 2, 3, 2, 3, 3, 4, 2, 3, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5, 5, 5, 6, 5, 6, 6, 6, 5, 7, 6, 7, 6, 6, 6, 8, 6, 7, 7, 8, 8, 8, 7, 7, 9, 8, 8
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Crossrefs

In other bases: A004526 (base 2, adjusted to start 1, 0, 0, 1, 1, ...), A008615 (base 3), A165027 (base 4), A008617 (base 5), A165066 (base 6), A008722 (base 7, conjecturally), A165105 (base 8), A164733 (base 10).

Formula

Conjectures from Chai Wah Wu, Apr 13 2024: (Start)
a(n) = a(n-2) - a(n-3) + a(n-5) - a(n-6) + a(n-8) + a(n-15) - a(n-17) + a(n-18) - a(n-20) + a(n-21) - a(n-23) for n > 24.
G.f.: x*(x^23 + x^22 - x^21 + x^20 + 2*x^19 - x^18 + x^17 + 3*x^16 - 2*x^15 + 3*x^13 - x^12 + 2*x^10 - x^9 + 2*x^7 - x^5 + x^4 + x^3 - x^2 + 1)/(x^23 - x^21 + x^20 - x^18 + x^17 - x^15 - x^8 + x^6 - x^5 + x^3 - x^2 + 1). (End)
Showing 1-7 of 7 results.