cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A165137 a(n) is the number of patterns for n-character papaya words in an infinite alphabet.

Original entry on oeis.org

1, 1, 2, 4, 10, 21, 50, 99, 250, 454, 1242, 2223, 6394, 11389, 35002, 62034, 202010, 359483, 1233518, 2203507, 7944110, 14249736, 53811584, 96912709, 382289362, 691110821, 2841057442, 5154280744, 22033974854, 40105797777, 177946445580
Offset: 0

Views

Author

Sergei Bernstein and Tanya Khovanova, Sep 04 2009

Keywords

Comments

Papaya words are concatenations of two palindromes or palindromes themselves. A165136 is the number of papaya patterns for n-digit numbers. Thus a(n) coincides with A165136 for small n, and is greater than A165136 for larger n. The actual number of n-digit papaya numbers is A165135.
The first 19 terms of this sequence are the same as in A165136. A165137(20) = A165136(20)+10. - Tanya Khovanova, Oct 01 2009, corrected by Franklin T. Adams-Watters, Apr 10 2011

Examples

			There are two types of two-digit papaya numbers: aa, or ab. Hence a(2) = 2. There are four types of three-digit papaya numbers: aaa, aab, aba, abb. Hence a(3) = 4.
		

Crossrefs

Programs

  • Mathematica
    R[k_?EvenQ] := (1/2)*k*(BellB[1 + k/2] + BellB[k/2]);
    R[k_?OddQ] := k*BellB[1 + (k - 1)/2];
    a[0] = 1; a[n_] := a[n] = R[n] - Sum[EulerPhi[n/d]*a[d], {d, Most[Divisors[ n]]}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
  • Python
    from functools import lru_cache
    from sympy import bell, totient, proper_divisors
    @lru_cache(maxsize=None)
    def A165137(n): return (n*bell((n>>1)+1) if n&1 else (a:=n>>1)*(bell(a)+bell(a+1)))-sum(totient(n//d)*A165137(d) for d in proper_divisors(n,generator=True)) if n else 1 # Chai Wah Wu, Feb 19 2024

Formula

a(n) = R(n) - Sum_{d|n,dA000110(k). - Andrew Howroyd, Mar 29 2016

Extensions

a(0) and a(7)-a(14) from Franklin T. Adams-Watters, Apr 10 2011
a(15)-a(30) from Andrew Howroyd, Mar 29 2016

A165610 The number of patterns of non-papaya words.

Original entry on oeis.org

0, 0, 1, 5, 31, 153, 778, 3890, 20693, 114733, 676347, 4207203, 27633048, 190864320, 1382896511, 10479940137, 82864510321, 682075572641, 5832740001550, 51724150291262, 474869801907015, 4506715684635739, 44152005758171637, 445958868912515927, 4638590331538888532
Offset: 1

Views

Author

Tanya Khovanova, Sep 22 2009

Keywords

Comments

Papaya words are defined as palindromes or concatenations of two palindromes.

Examples

			The only three-character non-papaya pattern is abc - words with all distinct letters. Four-character non-papaya patterns are: aabc, abbc, abcc, abca, abcd.
		

Crossrefs

Programs

  • Mathematica
    R[k_?EvenQ] := (1/2)*k*(BellB[1 + k/2] + BellB[k/2]);
    R[k_?OddQ] := k*BellB[1 + (k - 1)/2];
    b[0] = 1; b[n_] := b[n] = R[n] - Sum[EulerPhi[n/d]*b[d], {d, Most[ Divisors[n]]}];
    a[n_] := BellB[n] - b[n];
    Array[a, 25] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)

Formula

a(n) = A000110(n) - A165137(n).

Extensions

a(7)-a(25) from Andrew Howroyd, Mar 29 2016

A165611 The number of n-digit non-papaya numbers.

Original entry on oeis.org

0, 0, 648, 7128, 85536, 870750, 8937054, 89606088, 899190558, 8995054860, 89990100090, 899940633714, 8999883000108, 89999307063540, 899998650010008, 8999992080398088, 89999984700000144, 899999910900869040, 8999999829000000162, 89999999010004961988
Offset: 1

Views

Author

Tanya Khovanova, Sep 22 2009

Keywords

Comments

These are numbers that are neither palindromes nor concatenations of two palindromes. Three digit numbers that are non-papaya are numbers with all distinct digits. There are 9*9*8 of them: 648.

Crossrefs

Formula

a(n) = A052268(n) - A165135(n).

Extensions

a(6)-a(20) from Andrew Howroyd, Mar 29 2016
Showing 1-3 of 3 results.