A165162 Triangle T(n,m) with 2n-1 entries per row, read by rows: the first n entries count down from n to 1, the remaining n-1 entries down from n-1 to 1.
1, 2, 1, 1, 3, 2, 1, 2, 1, 4, 3, 2, 1, 3, 2, 1, 5, 4, 3, 2, 1, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 8, 7, 6, 5, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 8, 7, 6, 5, 4, 3, 2, 1, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 1
Examples
1; 2,1,1; 3,2,1,2,1; 4,3,2,1,3,2,1; 5,4,3,2,1,4,3,2,1;
References
- P. Curtz, Stabilite locale des systemes quadratiques. Ann. sc. Ecole Normale Sup., 1980, 293-302.
Programs
-
Mathematica
Flatten[ Table[ Range[k, 1, -1], {n, 1, 10}, {k, {n, n-1}}]] (* Jean-François Alcover, Aug 02 2012 *)
Formula
T(n,m) = n-m+1 for 1 <= m <= n. T(n,m) = 2n-m for n< m <= 2n-1. [R. J. Mathar, Nov 24 2010]
sum_{m=1..2n-1} T(n,m) = n^2.
Comments