cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165187 a(n) = n^3*(n+1)^2*(n+2)/12.

Original entry on oeis.org

1, 24, 180, 800, 2625, 7056, 16464, 34560, 66825, 121000, 207636, 340704, 538265, 823200, 1224000, 1775616, 2520369, 3508920, 4801300, 6468000, 8591121, 11265584, 14600400, 18720000, 23765625, 29896776, 37292724, 46154080, 56704425, 69192000, 83891456, 101105664
Offset: 1

Views

Author

Alford Arnold, Sep 06 2009

Keywords

Comments

a(n) is row 30 of Table A128629 and can be generated by multiplying rows
two, three and five (or any other combination of rows with a row number product of 30).

Examples

			1,2,3,4,5, ... (A000027) times 1,3,6,10,15, ... (A000217) times 1,4,10,20,35, ... (A000292) yields 1,24,180,800, ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := n^3*(n+1)^2*(n+2)/12; Array[a, 35] (* Amiram Eldar, Feb 13 2023 *)

Formula

a(n) = A000027(n)*A000217(n)*A000292(n) = A128629(30,n).
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
G.f.: -x*(1+17*x+33*x^2+9*x^3)/(x-1)^7.
From Amiram Eldar, Feb 13 2023: (Start)
Sum_{n>=1} 1/a(n) = 153/4 - 9*Pi^2/2 + 6*zeta(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 48*log(2) - 141/4 - Pi^2/4 + 9*zeta(3)/2. (End)

Extensions

Edited and extended by R. J. Mathar, Sep 09 2009