cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A165203 Expansion of (1+x)*c(x)^3/(1-x*c(x)^3), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 5, 20, 81, 332, 1372, 5702, 23793, 99576, 417664, 1754866, 7383204, 31096466, 131084954, 552969854, 2334012425, 9856336324, 41639407776, 175971686398, 743888534968, 3145439344550, 13302946909338, 56272308538682
Offset: 0

Views

Author

Paul Barry, Sep 07 2009

Keywords

Comments

Hankel transform is A165204.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1+x)*(1-Sqrt(1-4*x))^3/(x*(8*x^2 - (1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 18 2019
    
  • Mathematica
    Rest[CoefficientList[Series[(1+x)*((1-x)*Sqrt[1-4*x]+5*x-1)/(2*(1-4*x-x^2)), {x, 0, 30}], x]] (* Vaclav Kotesovec, Feb 01 2014 *)
  • PARI
    first(n) = x='x+O('x^(n+1)); Vec((1+x)*((1-x)*sqrt(1-4*x)+5*x-1)/(2*(1-4*x-x^2))) \\ Iain Fox, Feb 27 2018
    
  • Sage
    ((1+x)*(1-sqrt(1-4*x))^3/(x*(8*x^2 - (1-sqrt(1-4*x))^3)) ).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 18 2019

Formula

G.f. (for offset 1): (1+x)*((1-x)*sqrt(1-4*x)+5*x-1)/(2*(1-4*x-x^2)).
a(n) = (A165201(n) - 0^n) + A165201(n+1).
Conjecture: (n+1)*(5*n-31)*a(n) +(5*n^2+74*n+62)*a(n-1) +(-285*n^2+ 1072*n-757)*a(n-2) +(695*n^2-3674*n+4206)*a(n-3) +2*(45*n-74)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Dec 11 2011
a(n) ~ (18/sqrt(5)-8) * (2+sqrt(5))^(n+2). - Vaclav Kotesovec, Feb 01 2014
Showing 1-1 of 1 results.