A165237 Long legs of primitive Pythagorean triples (a,b,c) for which 2a+1, 2b+1 and 2c+1 are primes.
21, 56, 285, 483, 783, 999, 1269, 1593, 1911, 2613, 3003, 3596, 3621, 3740, 4136, 4233, 4928, 5096, 5451, 5828, 5840, 6320, 7040, 7280, 8036, 8468, 9021, 9296, 9591, 11660, 12075, 12573, 12705, 12920, 12956, 13563, 14396, 14595, 15429, 15561
Offset: 1
Keywords
Examples
See A165236.
Programs
-
Mathematica
amax=6*10^4;lst={};k=0;q=12!;Do[If[(e=((n+1)^2-n^2))>amax,Break[]];Do[If[GCD[m,n]==1,a=m^2-n^2;If[PrimeQ[2*a+1],b=2*m*n;If[PrimeQ[2*b+1],If[GCD[a,b]==1,If[a>b,{a,b}={b,a}];If[a>amax,Break[]];c=m^2+n^2;If[PrimeQ[2*c+1],k++;AppendTo[lst,b]]]]]];If[a>amax,Break[]],{m,n+1,12!,2}],{n,1,q,1}];Union@lst