A165238 Hypotenuses c of primitive Pythagorean Triples (a,b,c) such that 2*a+1, 2*b+1 and 2*c+1 are primes.
29, 65, 293, 485, 785, 1049, 1469, 1961, 2105, 3005, 3725, 3821, 4145, 4181, 4685, 4745, 5105, 5501, 6053, 6929, 6953, 7121, 7361, 7841, 8693, 9029, 9125, 10025, 12041, 12833, 12965, 13649, 14285, 14909, 15173, 15689, 15773, 15821, 16493
Offset: 1
Keywords
Examples
(a,b,c) = (20,21,29), (33,56,65), (44,483,485), (56,783,785), (68,285,293), (273,4136,4145). In the first case, for example, 2*20+1=41, 2*21+1 and 2*29+1 are all prime, which adds the half-hypotenuse 29 to the sequence.
Links
- Eric Weisstein, Pythagorean Triple, MathWorld
Programs
-
Mathematica
amax=6*10^4;lst={};k=0;q=12!;Do[If[(e=((n+1)^2-n^2))>amax,Break[]]; Do[If[GCD[m, n]==1,a=m^2-n^2;If[PrimeQ[2*a+1],b=2*m*n;If[PrimeQ[2*b+1], If[GCD[a, b]==1,If[a>b,{a,b}={b,a}];If[a>amax,Break[]];c=m^2+n^2; If[PrimeQ[2*c+1], k++;AppendTo[lst,c]]]]]];If[a>amax,Break[]],{m,n+1,12!,2}],{n,1,q,1}];Union@lst
Extensions
Comments moved to examples and definition clarified by R. J. Mathar, Mar 25 2010
Comments