cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165260 Short legs of primitive Pythagorean triples which have a perimeter which is the average of a twin prime pair.

Original entry on oeis.org

3, 5, 15, 21, 24, 28, 36, 41, 59, 64, 89, 100, 101, 120, 131, 132, 141, 153, 155, 168, 180, 203, 204, 208, 209, 215, 220, 231, 244, 280, 288, 300, 309, 315, 336, 341, 348, 351, 395, 405, 408, 429, 448, 453, 455, 495, 520, 540, 551, 567, 568, 580, 592, 636, 648
Offset: 1

Views

Author

Keywords

Examples

			Triples (a,b,c) which satisfy the rules are (3,4,5), (5,12,13), (15,112,113), (21,220,221), (24,143,145), (28,195,197), (36,77,85), (41,840,841), (59,1740,1741), (64,1023,1025), (89,3960,3961), (100,2499,2501), ... 3+4+5=12 -> 11 and 13 are primes, 5+12+13=30 -> 29 and 31 are primes, ...
		

Crossrefs

Programs

  • Maple
    isA014574 := proc(n)
            return ( isprime(n-1) and isprime(n+1) ) ;
    end proc:
    isA165260 := proc(n)
            local d,bplc,b,c ;
            for d in numtheory[divisors](n^2) do
                    bplc := n^2/d ;
                    c := (d+bplc)/2 ;
                    b := (bplc-d)/2 ;
                    if type(c,'integer') and type(b,'integer') then
                    if c > b and b >= n then
                            if igcd(n,b,c) = 1 and  isA014574(n+b+c) then
                                    return true;
                            end if;
                    end if;
                    end if;
            end do:
            return false;
    end proc:
    for n from 3 to 600 do
            if isA165260(n) then
                    printf("%d,",n);
            end if;
    end do: # R. J. Mathar, Oct 29 2011
  • Mathematica
    amax=10^4;lst={};k=0;q=12!;Do[If[(e=((n+1)^2-n^2))>amax,Break[]];Do[If[GCD[m,n]==1,a=m^2-n^2;b=2*m*n;If[GCD[a,b]==1,If[a>b,{a,b}={b,a}];If[a>amax,Break[]];c=m^2+n^2;x=a+b+c;If[PrimeQ[x-1]&&PrimeQ[x+1],k++;AppendTo[lst,a]]]],{m,n+1,12!,2}],{n,1,q,1}];Union@lst