cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165318 Primes p where the number of divisors of p-1 is a power of 2.

Original entry on oeis.org

2, 3, 7, 11, 23, 31, 41, 43, 47, 59, 67, 71, 79, 83, 89, 103, 107, 131, 137, 139, 167, 179, 191, 211, 223, 227, 233, 239, 251, 263, 271, 281, 283, 311, 313, 331, 347, 359, 367, 379, 383, 409, 419, 431, 439, 443, 457, 463, 467, 479, 499, 503, 521, 547, 563, 569
Offset: 1

Views

Author

Leroy Quet, Sep 14 2009

Keywords

Crossrefs

Programs

  • Maple
    isA000079 := proc(n) RETURN( n=1 or numtheory[factorset](n) = {2}) ; end: A165318 := proc(n) if n = 1 then 2; else p := nextprime(procname(n-1)) ; while not isA000079(numtheory[tau](p-1)) do p := nextprime(p) ; od; p ; fi; end: seq(A165318(n),n=1..90) ; # R. J. Mathar, Sep 18 2009
  • Mathematica
    Select[Prime[Range[200]],IntegerQ[Log[2,DivisorSigma[0,#-1]]]&] (* Harvey P. Dale, Oct 14 2018 *)
  • PARI
    isok(p) = isprime(p) && apply(x -> x >> valuation(x, 2), numdiv(p-1)) == 1; \\ Amiram Eldar, Jun 26 2025

Extensions

More terms from R. J. Mathar, Sep 18 2009