A165367 Trisection a(n) = A026741(3n + 2).
1, 5, 4, 11, 7, 17, 10, 23, 13, 29, 16, 35, 19, 41, 22, 47, 25, 53, 28, 59, 31, 65, 34, 71, 37, 77, 40, 83, 43, 89, 46, 95, 49, 101, 52, 107, 55, 113, 58, 119, 61, 125, 64, 131, 67, 137, 70, 143, 73, 149, 76, 155, 79, 161, 82, 167, 85, 173, 88, 179, 91, 185, 94, 191, 97, 197
Offset: 0
Links
- John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399 [math.GM], 2011.
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1)
Programs
-
Maple
A026741 := proc(n) if type(n,'odd') then n; else n/2 ; fi; end: A165367 := proc(n) A026741(3*n+2) ; end: seq(A165367(n),n=0..100) ; # R. J. Mathar, Nov 22 2009
-
Mathematica
LinearRecurrence[{0, 2, 0, -1}, {1, 5, 4, 11}, 66] (* Jean-François Alcover, Nov 15 2017 *)
-
PARI
a(n) = (3*n+2)>>!(n%2); \\ Ruud H.G. van Tol, Oct 09 2023
Formula
Extensions
All comments rewritten as formulas by R. J. Mathar, Nov 22 2009
Comments