A165409 Transform of 2^n by the aerated Catalan triangle A165408.
1, 2, 4, 10, 24, 56, 136, 328, 784, 1896, 4576, 11008, 26592, 64192, 154752, 373696, 902144, 2176640, 5255424, 12687488, 30621952, 73931392, 178484736, 430845952, 1040176640, 2511199232, 6062209024, 14635617280, 35333443584, 85300015104
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( 2/(1-4*x+Sqrt(1-8*x^3)) )); // G. C. Greubel, Nov 10 2022 -
Mathematica
CoefficientList[Series[2/(1-4*x+Sqrt[1-8*x^3]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
-
SageMath
def A165408(n,k): return 0 if (n>3*k) else (1+(-1)^(n-k))*(3*k-n+2)*binomial(int((n+k)/2), k)/(4*(k+1)) def A165409(n): return sum(2^k*A165408(n,k) for k in range(n+1)) [A165409(n) for n in range(41)] # G. C. Greubel, Nov 10 2022
Formula
G.f.: 1/(1-2*x-2*x^3*c(2*x^3)) = 2/(1-4*x+sqrt(1-8*x^3)) = (1-4*x-sqrt(1-8*x^3) )/(4*x*(1-2*x-x^2)), c(x) the g.f. of A000108.
G.f.: 1/(1-2*x-2*x^3/(1-2*x^3/(1-2*x^3/(1-2*x^3/(1-... (continued fraction).
a(n) = Sum_{k=ceiling(n/3)..n} 2^k*C((n+k)/2, k)*((3*k-n)/2 + 1)*(1+(-1)^(n-k))/(2*(k+1)).
a(n) = Sum_{k=0..n} 2^k * A165408(n,k).
a(n) = Sum_{k=0..n+1} Pell(n-k+1)*(0^k - 2^((k-2)/2)*A000108((k-2)/3)*(1+2*cos(2*Pi*(k-2)/3))/3).
(n+1)*a(n) = 2(n+1)*a(n-1) + (n+1)*a(n-2) + 4*(2*n-7)*a(n-3) - 8(2*n-7)*a(n-4) - 4*(2*n-7)*a(n-5). - R. J. Mathar, Nov 17 2011
a(n) ~ (4+sqrt(2)) * (1+sqrt(2))^n / 8. - Vaclav Kotesovec, Feb 01 2014
Comments