cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165409 Transform of 2^n by the aerated Catalan triangle A165408.

Original entry on oeis.org

1, 2, 4, 10, 24, 56, 136, 328, 784, 1896, 4576, 11008, 26592, 64192, 154752, 373696, 902144, 2176640, 5255424, 12687488, 30621952, 73931392, 178484736, 430845952, 1040176640, 2511199232, 6062209024, 14635617280, 35333443584, 85300015104
Offset: 0

Views

Author

Paul Barry, Sep 17 2009

Keywords

Comments

Hankel transform is A165410.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( 2/(1-4*x+Sqrt(1-8*x^3)) )); // G. C. Greubel, Nov 10 2022
    
  • Mathematica
    CoefficientList[Series[2/(1-4*x+Sqrt[1-8*x^3]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
  • SageMath
    def A165408(n,k): return 0 if (n>3*k) else (1+(-1)^(n-k))*(3*k-n+2)*binomial(int((n+k)/2), k)/(4*(k+1))
    def A165409(n): return sum(2^k*A165408(n,k) for k in range(n+1))
    [A165409(n) for n in range(41)] # G. C. Greubel, Nov 10 2022

Formula

G.f.: 1/(1-2*x-2*x^3*c(2*x^3)) = 2/(1-4*x+sqrt(1-8*x^3)) = (1-4*x-sqrt(1-8*x^3) )/(4*x*(1-2*x-x^2)), c(x) the g.f. of A000108.
G.f.: 1/(1-2*x-2*x^3/(1-2*x^3/(1-2*x^3/(1-2*x^3/(1-... (continued fraction).
a(n) = Sum_{k=ceiling(n/3)..n} 2^k*C((n+k)/2, k)*((3*k-n)/2 + 1)*(1+(-1)^(n-k))/(2*(k+1)).
a(n) = Sum_{k=0..n} 2^k * A165408(n,k).
a(n) = Sum_{k=0..n+1} Pell(n-k+1)*(0^k - 2^((k-2)/2)*A000108((k-2)/3)*(1+2*cos(2*Pi*(k-2)/3))/3).
(n+1)*a(n) = 2(n+1)*a(n-1) + (n+1)*a(n-2) + 4*(2*n-7)*a(n-3) - 8(2*n-7)*a(n-4) - 4*(2*n-7)*a(n-5). - R. J. Mathar, Nov 17 2011
a(n) ~ (4+sqrt(2)) * (1+sqrt(2))^n / 8. - Vaclav Kotesovec, Feb 01 2014