cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165431 A transform of the central binomial coefficients.

Original entry on oeis.org

1, 2, 6, 16, 46, 132, 388, 1152, 3462, 10492, 32036, 98400, 303756, 941576, 2928936, 9138176, 28584006, 89609196, 281466916, 885620576, 2790812196, 8806560056, 27823745016, 88005102336, 278637450396, 883024243032, 2800748951208
Offset: 0

Views

Author

Paul Barry, Sep 18 2009

Keywords

Comments

Hankel transform is 2^n.

Crossrefs

Cf. A026569.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1/Sqrt(8*x^3-4*x+1))); // G. C. Greubel, Oct 20 2018
  • Maple
    a := n -> `if`(n=0,1,2^n*hypergeom([1/2, 1/2-n/2, -n/2],[1, -n],-4)):
    seq(simplify(a(n)),n=0..25); # Peter Luschny, Jul 28 2016
  • Mathematica
    Table[Sum[Binomial[n-k,k]*2^(n-2*k)*Binomial[2*k,k], {k,0,n}], {n,0,30}] (* Vaclav Kotesovec, Jul 28 2016 *)
    CoefficientList[Series[1/Sqrt[8*x^3-4*x+1], {x, 0, 30}], x] (* Vaclav Kotesovec, Jul 28 2016 *)
  • PARI
    x='x+O('x^30); Vec(1/sqrt(8*x^3-4*x+1)) \\ G. C. Greubel, Oct 20 2018
    

Formula

G.f.: 1/(1-2x-2x^2/(1-x^2/(1-2x-x^2/(1-x^2/(1-2x-x^2/(1-x^2/(1-... (continued fraction);
a(n) = Sum_{k=0..n} C(n-k,k)*2^(n-2k)*C(2k,k).
From Vaclav Kotesovec, Jul 28 2016: (Start)
D-finite with recurrence: n*a(n) = 2*(2*n - 1)*a(n-1) - 4*(2*n - 3)*a(n-3).
G.f.: 1/sqrt(8*x^3-4*x+1).
a(n) ~ sqrt(1 + 2/sqrt(5)) * (1+sqrt(5))^n / sqrt(Pi*n).
(End)
a(n) = 2^n*hypergeom([1/2, 1/2-n/2, -n/2],[1, -n],-4) for n>=1. - Peter Luschny, Jul 28 2016